【Matlab】RBF径向基神经网络时序预测算法(附代码)

2024-01-03 02:52

本文主要是介绍【Matlab】RBF径向基神经网络时序预测算法(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  资源下载: https://download.csdn.net/download/vvoennvv/88692108

一,概述

        RBF 神经网络(Radial Basis Function Neural Network)是一种基于径向基函数的前向型神经网络。它的特点是具有快速的训练速度和良好的泛化性能。 RBF 神经网络的基本结构包括输入层、隐藏层和输出层。其中隐藏层是 RBF 层,它的神经元使用径向基函数来计算输入向量与每个神经元之间的距离,用这个距离值来作为神经元的激活函数。常用的径向基函数包括高斯函数、多项式函数等。 RBF 神经网络常用于分类和回归问题的解决,它的训练过程通常采用无监督学习算法,如 K 均值聚类算法,来对 RBF 层的中心进行初始化,然后再用监督学习算法,如误差反向传播算法,来调整网络的权值。 RBF 神经网络的优点在于它的泛化能力强、训练速度快、易于实现和调整等。但是它也存在一些缺点,如对参数的选择敏感、容易出现过拟合等。

二,代码

代码中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel。

部分代码如下:

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  构造数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  创建网络
rbf_spread = 1000;                          % 径向基函数的扩展速度
net = newrbe(p_train, t_train, rbf_spread);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);......

三,运行结果

资源下载: https://download.csdn.net/download/vvoennvv/88692108

这篇关于【Matlab】RBF径向基神经网络时序预测算法(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/564378

相关文章

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

springboot项目中集成shiro+jwt完整实例代码

《springboot项目中集成shiro+jwt完整实例代码》本文详细介绍如何在项目中集成Shiro和JWT,实现用户登录校验、token携带及接口权限管理,涉及自定义Realm、ModularRe... 目录简介目的需要的jar集成过程1.配置shiro2.创建自定义Realm2.1 LoginReal

SpringBoot集成Shiro+JWT(Hutool)完整代码示例

《SpringBoot集成Shiro+JWT(Hutool)完整代码示例》ApacheShiro是一个强大且易用的Java安全框架,提供了认证、授权、加密和会话管理功能,在现代应用开发中,Shiro因... 目录一、背景介绍1.1 为什么使用Shiro?1.2 为什么需要双Token?二、技术栈组成三、环境

Java 与 LibreOffice 集成开发指南(环境搭建及代码示例)

《Java与LibreOffice集成开发指南(环境搭建及代码示例)》本文介绍Java与LibreOffice的集成方法,涵盖环境配置、API调用、文档转换、UNO桥接及REST接口等技术,提供... 目录1. 引言2. 环境搭建2.1 安装 LibreOffice2.2 配置 Java 开发环境2.3 配

Python跨文件实例化、跨文件调用及导入库示例代码

《Python跨文件实例化、跨文件调用及导入库示例代码》在Python开发过程中,经常会遇到需要在一个工程中调用另一个工程的Python文件的情况,:本文主要介绍Python跨文件实例化、跨文件调... 目录1. 核心对比表格(完整汇总)1.1 自定义模块跨文件调用汇总表1.2 第三方库使用汇总表1.3 导

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放