深度学习分类问题中accuracy等评价指标的理解

2024-01-02 12:36

本文主要是介绍深度学习分类问题中accuracy等评价指标的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在处理深度学习分类问题时,会用到一些评价指标,如accuracy(准确率)等。刚开始接触时会感觉有点多有点绕,不太好理解。本文写出我的理解,同时以语音唤醒(唤醒词识别)来举例,希望能加深理解这些指标。

1,TP / FP / TN / FN

下表表示为一个二分类的混淆矩阵(多分类同理,把不属于当前类的都认为是负例),表中的四个参数均用两个字母表示,第一个字母表示判断结果正确与否(正确用T(True),错误用F(False),第二个字母表示判定结果(正例用P(Positive),负例用N(Negative))。四个参数的具体意思如下:

TP (True Positive):表示实际为正例,判定也为正例的次数,即表示判定为正例且判定正确的次数。

FP (False Positive): 表示实际为负例,却判定为正例的次数,即表示判定为正例但判断错误的次数。

TN (True Negative):表示实际为负例,判定也为负例的次数,即表示判定为负例且判定正确的次数。

FN (False Negative): 表示实际为正例,却判定为负例的次数,即表示判定为负例但判断错误的次数。

为了帮助理解,我以智能音箱中的语音唤醒(假设唤醒词为“芝麻开门”)来举例。这里正例就是唤醒词“芝麻开门”,负例就是除了“芝麻开门”之外的其他词,即非唤醒词,如“阿里巴巴”。设定评估时说唤醒词和非唤醒词各100次,TP就表示说了“芝麻开门”且被识别的次数(假设98次),FN就表示说了“芝麻开门”却没被识别(判定成负例)的次数(假设2次),FP就表示说了非唤醒词却被识别(判定成正例)的次数(假设1次),TN就表示说了非唤醒词且没被识别的次数(假设99次)。

2,accuracy / precision / recall

accuracy是准确率,表示判定正确的次数与所有判定次数的比例。判定正确的次数是(TP+TN),所有判定的次数是(TP + TN + FP +FN),所以

在语音唤醒例子中,TP = 98,TN = 99,FP = 1, FN = 2, 所以accuracy = (98 + 99) / (98 + 99 + 1 + 2) = 98.5%,即准确率为 98.5%。

precision是精确率,表示正确判定为正例的次数与所有判定为正例的次数的比例。正确判定为正例的次数是TP,所有判定为正例的次数是(TP + FP),所以

在语音唤醒例子中,TP = 98, FP = 1, 所以precision = 98 / (98 + 1) = 99%,即精确率为 99%。

recall是召回率,表示正确判定为正例的次数与所有实际为正例的次数的比例。正确判定为正例的次数是TP,所有实际为正例的次数是(TP + FN),所以

在语音唤醒例子中,TP = 98, FN = 2, 所以recall = 98 / (98 + 2) = 98%,即召回率为 98%。在语音唤醒场景下,召回率也叫唤醒率,表示说了多少次唤醒词被唤醒次数的比例。

1,  FAR / FRR

FAR (False Acceptance Rate)是错误接受率,也叫误识率,表示错误判定为正例的次数与所有实际为负例的次数的比例。错误判定为正例的次数是FP,所有实际为负例的次数是(FP + TN),所以

在语音唤醒例子中,FP = 1, TN = 99, 所以FAR = 1 / (99 + 1) = 1%,即错误接受率为 1%。在语音唤醒场景下,错误接受率也叫误唤醒率,表示说了多少次非唤醒词却被唤醒次数的比例。

FRR (False Rejection Rate)是错误拒绝率,也叫拒识率,表示错误判定为负例的次数与所有实际为正例的次数的比例。错误判定为负例的次数是FN,所有实际为正例的次数是(TP + FN),所以

在语音唤醒例子中,FN = 2, TP = 98, 所以FRR = 2/ (2 + 98) = 2%,即错误拒绝率为 2%。在语音唤醒场景下,错误拒绝率也叫不唤醒率,表示说了多少次唤醒词却没被唤醒次数的比例。

2,  ROC曲线 / EER

ROC(receiver operating characteristic curve)曲线是“受试者工作特征”曲线,是一种已经被广泛接受的系统评价指标,它反映了识别算法在不同阈值上,FRR(拒识率)和FAR(误识率)的平衡关系。ROC曲线中横坐标是FRR(拒识率),纵坐标是FAR(误识率),等错误率(EER Equal-Error Rate)是拒识率和误识率的一个平衡点,等错误率能够取到的值越低,表示算法的性能越好。

上图是ROC曲线的示意图,我从语音唤醒的场景来解释。从上图看出FRR低/FAR高时,即拒识率低、误识率高时,智能音箱很容易被唤醒,即很好用。FRR高/FAR低时,即拒识率高、误识率低时,智能音箱不容易被唤醒,即不太方便用,但是很难误唤醒,安全性很高。真正使用时要找到一个FAR和FRR的平衡点(EER),也就是不那么难唤醒,方便使用,同时也不会有高的误唤醒,保证安全。

这篇关于深度学习分类问题中accuracy等评价指标的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562461

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据