推荐七款常用的Python数据可视化模块,数据可视化的福利

2024-01-01 00:20

本文主要是介绍推荐七款常用的Python数据可视化模块,数据可视化的福利,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

image

数据可视化的库有挺多的,这里推荐几个比较常用的:

Matplotlib

Plotly

Seaborn

Ggplot

Bokeh

Pyechart

Pygal

关注后私信小编 PDF领取十套电子文档书籍

Plotly

plotly 文档地址(https://plot.ly/python/#financial-charts)

image

使用方式:

plotly 有 online 和 offline 两种方式,这里只介绍 offline 的。

image

这是 plotly 官方教程的一部分

import plotly.plotly as py

import numpy as np

data = [dict(

visible=False,

line=dict(color=’#00CED1’, width=6), # 配置线宽和颜色

name=’ = ’ + str(step),

x=np.arange(0, 10, 0.01), # x 轴参数

y=np.sin(step * np.arange(0, 10, 0.01))) for step in np.arange(0, 5, 0.1)] # y 轴参数

data[10][‘visible’] = True

py.iplot(data, filename=‘Single Sine Wave’)

只要将最后一行中的

py.iplot

替换为下面代码

py.offline.plot

便可以运行。

漏斗图

这个图代码太长了,就不 po 出来了。

image

Basic Box Plot

好吧,不知道怎么翻译,直接用原名。

image

import plotly.plotly

import plotly.graph_objs as go

import numpy as np

y0 = np.random.randn(50)-1

y1 = np.random.randn(50)+1

trace0 = go.Box(

y=y0

)

trace1 = go.Box(

y=y1

)

data = [trace0, trace1]

plotly.offline.plot(data)

Wind Rose Chart

好吧,不知道怎么翻译,直接用原名。

image

import plotly.graph_objs as go

trace1 = go.Barpolar(

r=[77.5, 72.5, 70.0, 45.0, 22.5, 42.5, 40.0, 62.5],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=‘11-14 m/s’,

marker=dict(

color=‘rgb(106,81,163)’

)

)

trace2 = go.Barpolar(

r=[57.49999999999999, 50.0, 45.0, 35.0, 20.0, 22.5, 37.5, 55.00000000000001],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’], # 鼠标浮动标签文字描述

name=‘8-11 m/s’,

marker=dict(

color=‘rgb(158,154,200)’

)

)

trace3 = go.Barpolar(

r=[40.0, 30.0, 30.0, 35.0, 7.5, 7.5, 32.5, 40.0],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=‘5-8 m/s’,

marker=dict(

color=‘rgb(203,201,226)’

)

)

trace4 = go.Barpolar(

r=[20.0, 7.5, 15.0, 22.5, 2.5, 2.5, 12.5, 22.5],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=’

marker=dict(

color=‘rgb(242,240,247)’

)

)

data = [trace1, trace2, trace3, trace4]

layout = go.Layout(

title=‘Wind Speed Distribution in Laurel, NE’,

font=dict(

size=16

),

legend=dict(

font=dict(

size=16

)

),

radialaxis=dict(

ticksuffix=’%’

),

orientation=270

)

fig = go.Figure(data=data, layout=layout)

plotly.offline.plot(fig, filename=‘polar-area-chart’)

Basic Ternary Plot with Markers

篇幅有点长,这里就不 po 代码了。

image

Bokeh

这里展示一下常用的图表和比较抢眼的图表,详细的文档可查看(https://bokeh.pydata.org/en/latest/docs/user_guide/categorical.html)

条形图

这配色看着还挺舒服的,比 pyecharts 条形图的配色好看一点。

这篇关于推荐七款常用的Python数据可视化模块,数据可视化的福利的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557633

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息