推荐七款常用的Python数据可视化模块,数据可视化的福利

2024-01-01 00:20

本文主要是介绍推荐七款常用的Python数据可视化模块,数据可视化的福利,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

image

数据可视化的库有挺多的,这里推荐几个比较常用的:

Matplotlib

Plotly

Seaborn

Ggplot

Bokeh

Pyechart

Pygal

关注后私信小编 PDF领取十套电子文档书籍

Plotly

plotly 文档地址(https://plot.ly/python/#financial-charts)

image

使用方式:

plotly 有 online 和 offline 两种方式,这里只介绍 offline 的。

image

这是 plotly 官方教程的一部分

import plotly.plotly as py

import numpy as np

data = [dict(

visible=False,

line=dict(color=’#00CED1’, width=6), # 配置线宽和颜色

name=’ = ’ + str(step),

x=np.arange(0, 10, 0.01), # x 轴参数

y=np.sin(step * np.arange(0, 10, 0.01))) for step in np.arange(0, 5, 0.1)] # y 轴参数

data[10][‘visible’] = True

py.iplot(data, filename=‘Single Sine Wave’)

只要将最后一行中的

py.iplot

替换为下面代码

py.offline.plot

便可以运行。

漏斗图

这个图代码太长了,就不 po 出来了。

image

Basic Box Plot

好吧,不知道怎么翻译,直接用原名。

image

import plotly.plotly

import plotly.graph_objs as go

import numpy as np

y0 = np.random.randn(50)-1

y1 = np.random.randn(50)+1

trace0 = go.Box(

y=y0

)

trace1 = go.Box(

y=y1

)

data = [trace0, trace1]

plotly.offline.plot(data)

Wind Rose Chart

好吧,不知道怎么翻译,直接用原名。

image

import plotly.graph_objs as go

trace1 = go.Barpolar(

r=[77.5, 72.5, 70.0, 45.0, 22.5, 42.5, 40.0, 62.5],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=‘11-14 m/s’,

marker=dict(

color=‘rgb(106,81,163)’

)

)

trace2 = go.Barpolar(

r=[57.49999999999999, 50.0, 45.0, 35.0, 20.0, 22.5, 37.5, 55.00000000000001],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’], # 鼠标浮动标签文字描述

name=‘8-11 m/s’,

marker=dict(

color=‘rgb(158,154,200)’

)

)

trace3 = go.Barpolar(

r=[40.0, 30.0, 30.0, 35.0, 7.5, 7.5, 32.5, 40.0],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=‘5-8 m/s’,

marker=dict(

color=‘rgb(203,201,226)’

)

)

trace4 = go.Barpolar(

r=[20.0, 7.5, 15.0, 22.5, 2.5, 2.5, 12.5, 22.5],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=’

marker=dict(

color=‘rgb(242,240,247)’

)

)

data = [trace1, trace2, trace3, trace4]

layout = go.Layout(

title=‘Wind Speed Distribution in Laurel, NE’,

font=dict(

size=16

),

legend=dict(

font=dict(

size=16

)

),

radialaxis=dict(

ticksuffix=’%’

),

orientation=270

)

fig = go.Figure(data=data, layout=layout)

plotly.offline.plot(fig, filename=‘polar-area-chart’)

Basic Ternary Plot with Markers

篇幅有点长,这里就不 po 代码了。

image

Bokeh

这里展示一下常用的图表和比较抢眼的图表,详细的文档可查看(https://bokeh.pydata.org/en/latest/docs/user_guide/categorical.html)

条形图

这配色看着还挺舒服的,比 pyecharts 条形图的配色好看一点。

这篇关于推荐七款常用的Python数据可视化模块,数据可视化的福利的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557633

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统