多线程与高并发(九):单机压测工具JMH,单机最快MQ - Disruptor原理解析

本文主要是介绍多线程与高并发(九):单机压测工具JMH,单机最快MQ - Disruptor原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单机压测工具JMH

在这里插入图片描述

JMH Java准测试工具套件

什么是JMH
官网

http://openjdk.java.net/projects/code-tools/jmh/

创建JMH测试

1.创建Maven项目,添加依赖

<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><encoding>UTF-8</encoding><java.version>1.8</java.version><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target></properties><groupId>mashibing.com</groupId><artifactId>HelloJMH2</artifactId><version>1.0-SNAPSHOT</version><dependencies><!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core --><dependency><groupId>org.openjdk.jmh</groupId><artifactId>jmh-core</artifactId><version>1.21</version></dependency><!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-generator-annprocess --><dependency><groupId>org.openjdk.jmh</groupId><artifactId>jmh-generator-annprocess</artifactId><version>1.21</version><scope>test</scope></dependency></dependencies></project>

2.idea安装JMH插件 JMH plugin v1.0.3

3.由于用到了注解,打开运行程序注解配置

compiler -> Annotation Processors -> Enable Annotation Processing

4.定义需要测试类PS (ParallelStream)

package com.mashibing.jmh;import java.util.ArrayList;
import java.util.List;
import java.util.Random;public class PS {static List<Integer> nums = new ArrayList<>();static {Random r = new Random();for (int i = 0; i < 10000; i++) nums.add(1000000 + r.nextInt(1000000));}static void foreach() {nums.forEach(v->isPrime(v));}static void parallel() {nums.parallelStream().forEach(PS::isPrime);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}
}

5.写单元测试

这个测试类一定要在 test package下面

package com.mashibing.jmh;import org.openjdk.jmh.annotations.*;import static org.junit.jupiter.api.Assertions.*;public class PSTest {@Benchmark@Warmup(iterations = 1, time = 3)@Fork(5)@BenchmarkMode(Mode.Throughput)@Measurement(iterations = 1, time = 3)public void testForEach() {PS.foreach();}
}

6.运行测试类,如果遇到下面的错误:

   ERROR: org.openjdk.jmh.runner.RunnerException: ERROR: Exception while trying to acquire the JMH lock (C:\WINDOWS\/jmh.lock): C:\WINDOWS\jmh.lock (拒绝访问。), exiting. Use -Djmh.ignoreLock=true to forcefully continue.at org.openjdk.jmh.runner.Runner.run(Runner.java:216)at org.openjdk.jmh.Main.main(Main.java:71)

这个错误是因为JMH运行需要访问系统的TMP目录,解决办法是:

打开RunConfiguration -> Environment Variables -> include system environment viables

7.阅读测试报告

JMH中的基本概念

  1. Warmup
    预热,由于JVM中对于特定代码会存在优化(本地化),预热对于测试结果很重要

  2. Mesurement
    总共执行多少次测试

  3. Timeout

  4. Threads
    线程数,由fork指定

  5. Benchmark mode
    基准测试的模式

  6. Benchmark
    测试哪一段代码

Next

官方样例:
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/


Disruptor单机最快MQ

内存里的高效队列
在这里插入图片描述在这里插入图片描述

介绍

主页:http://lmax-exchange.github.io/disruptor/

源码:https://github.com/LMAX-Exchange/disruptor

GettingStarted: https://github.com/LMAX-Exchange/disruptor/wiki/Getting-Started

api: http://lmax-exchange.github.io/disruptor/docs/index.html

maven: https://mvnrepository.com/artifact/com.lmax/disruptor

Disruptor的特点

对比ConcurrentLinkedQueue : 链表实现

JDK中没有ConcurrentArrayQueue

Disruptor是数组实现的

无锁,高并发,使用环形Buffer,直接覆盖(不用清除)旧的数据,降低GC频率

实现了基于事件的生产者消费者模式(观察者模式)

RingBuffer

环形队列

RingBuffer的序号,指向下一个可用的元素

采用数组实现,没有首尾指针

对比ConcurrentLinkedQueue,用数组实现的速度更快

假如长度为8,当添加到第12个元素的时候在哪个序号上呢?用12%8决定

当Buffer被填满的时候到底是覆盖还是等待,由Producer决定

长度设为2的n次幂,利于二进制计算,例如:12%8 = 12 & (8 - 1) pos = num & (size -1)

Disruptor开发步骤
  1. 定义Event - 队列中需要处理的元素

  2. 定义Event工厂,用于填充队列

    这里牵扯到效率问题:disruptor初始化的时候,会调用Event工厂,对ringBuffer进行内存的提前分配

    GC产频率会降低

  3. 定义EventHandler(消费者),处理容器中的元素

事件发布模板
long sequence = ringBuffer.next();  // Grab the next sequence
try {LongEvent event = ringBuffer.get(sequence); // Get the entry in the Disruptor// for the sequenceevent.set(8888L);  // Fill with data
} finally {ringBuffer.publish(sequence);
}
使用EventTranslator发布事件
//===============================================================EventTranslator<LongEvent> translator1 = new EventTranslator<LongEvent>() {@Overridepublic void translateTo(LongEvent event, long sequence) {event.set(8888L);}};ringBuffer.publishEvent(translator1);//===============================================================EventTranslatorOneArg<LongEvent, Long> translator2 = new EventTranslatorOneArg<LongEvent, Long>() {@Overridepublic void translateTo(LongEvent event, long sequence, Long l) {event.set(l);}};ringBuffer.publishEvent(translator2, 7777L);//===============================================================EventTranslatorTwoArg<LongEvent, Long, Long> translator3 = new EventTranslatorTwoArg<LongEvent, Long, Long>() {@Overridepublic void translateTo(LongEvent event, long sequence, Long l1, Long l2) {event.set(l1 + l2);}};ringBuffer.publishEvent(translator3, 10000L, 10000L);//===============================================================EventTranslatorThreeArg<LongEvent, Long, Long, Long> translator4 = new EventTranslatorThreeArg<LongEvent, Long, Long, Long>() {@Overridepublic void translateTo(LongEvent event, long sequence, Long l1, Long l2, Long l3) {event.set(l1 + l2 + l3);}};ringBuffer.publishEvent(translator4, 10000L, 10000L, 1000L);//===============================================================EventTranslatorVararg<LongEvent> translator5 = new EventTranslatorVararg<LongEvent>() {@Overridepublic void translateTo(LongEvent event, long sequence, Object... objects) {long result = 0;for(Object o : objects) {long l = (Long)o;result += l;}event.set(result);}};ringBuffer.publishEvent(translator5, 10000L, 10000L, 10000L, 10000L);
使用Lamda表达式
package com.mashibing.disruptor;import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.util.DaemonThreadFactory;public class Main03
{public static void main(String[] args) throws Exception{// Specify the size of the ring buffer, must be power of 2.int bufferSize = 1024;// Construct the DisruptorDisruptor<LongEvent> disruptor = new Disruptor<>(LongEvent::new, bufferSize, DaemonThreadFactory.INSTANCE);// Connect the handlerdisruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event));// Start the Disruptor, starts all threads runningdisruptor.start();// Get the ring buffer from the Disruptor to be used for publishing.RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();ringBuffer.publishEvent((event, sequence) -> event.set(10000L));System.in.read();}
}
ProducerType生产者线程模式

ProducerType有两种模式 Producer.MULTI和Producer.SINGLE

默认是MULTI,表示在多线程模式下产生sequence

如果确认是单线程生产者,那么可以指定SINGLE,效率会提升

如果是多个生产者(多线程),但模式指定为SINGLE,会出什么问题呢?

等待策略

1,(常用)BlockingWaitStrategy:通过线程阻塞的方式,等待生产者唤醒,被唤醒后,再循环检查依赖的sequence是否已经消费。

2,BusySpinWaitStrategy:线程一直自旋等待,可能比较耗cpu

3,LiteBlockingWaitStrategy:线程阻塞等待生产者唤醒,与BlockingWaitStrategy相比,区别在signalNeeded.getAndSet,如果两个线程同时访问一个访问waitfor,一个访问signalAll时,可以减少lock加锁次数.

4,LiteTimeoutBlockingWaitStrategy:与LiteBlockingWaitStrategy相比,设置了阻塞时间,超过时间后抛异常。

5,PhasedBackoffWaitStrategy:根据时间参数和传入的等待策略来决定使用哪种等待策略

6,TimeoutBlockingWaitStrategy:相对于BlockingWaitStrategy来说,设置了等待时间,超过后抛异常

7,(常用)YieldingWaitStrategy:尝试100次,然后Thread.yield()让出cpu

8,(常用)SleepingWaitStrategy : sleep

消费者异常处理

默认:disruptor.setDefaultExceptionHandler()

覆盖:disruptor.handleExceptionFor().with()

这篇关于多线程与高并发(九):单机压测工具JMH,单机最快MQ - Disruptor原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557073

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse