工具系列:TimeGPT_(5)特定领域微调模型

2023-12-28 11:12

本文主要是介绍工具系列:TimeGPT_(5)特定领域微调模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Fine-tuning(微调)是一种更有效地利用TimeGPT的强大过程。基础模型在大量数据上进行预训练,捕捉广泛的特征和模式。然后可以将这些模型专门用于特定的上下文或领域。通过微调,可以对模型的参数进行优化,以预测新任务,使其将其广泛的预先存在的知识调整到新数据的要求上。因此,微调作为一个关键的桥梁,将TimeGPT的广泛能力与您任务的特定性联系起来。

具体来说,微调的过程包括在输入数据上执行一定数量的训练迭代,以最小化预测误差。然后使用更新后的模型生成预测。要控制迭代次数,请使用forecast方法的finetune_steps参数。

# Import the colab_badge module from the nixtlats.utils package
from nixtlats.utils import colab_badge
/home/ubuntu/miniconda/envs/nixtlats/lib/python3.11/site-packages/statsforecast/core.py:25: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom tqdm.autonotebook import tqdm
colab_badge('docs/tutorials/5_finetuning')
# 导入load_dotenv函数,用于加载.env文件中的环境变量
from dotenv import load_dotenv
# 导入load_dotenv函数,用于加载环境变量
load_dotenv()
True

import pandas as pd
from nixtlats import TimeGPT
/home/ubuntu/miniconda/envs/nixtlats/lib/python3.11/site-packages/statsforecast/core.py:25: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom tqdm.autonotebook import tqdm
# 创建TimeGPT实例,传入token参数,如果没有传入则使用环境变量中的TIMEGPT_TOKEN
timegpt = TimeGPT(token='my_token_provided_by_nixtla')
# 导入TimeGPT模块timegpt = TimeGPT()  # 创建TimeGPT对象的实例

以下是如何对TimeGPT进行微调的示例:

# 从指定的URL读取CSV文件,并将其存储在DataFrame中
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv')# 显示DataFrame的前几行数据
df.head()
timestampvalue
01949-01-01112
11949-02-01118
21949-03-01132
31949-04-01129
41949-05-01121
# 导入所需模块和函数# 定义一个函数timegpt_fcst_finetune_df,用于对时间序列数据进行预测和微调
# 参数df表示输入的时间序列数据
# 参数h表示预测的时间步长
# 参数finetune_steps表示微调的步数
# 参数time_col表示时间列的名称
# 参数target_col表示目标列的名称
def timegpt_fcst_finetune_df(df, h, finetune_steps, time_col, target_col):# 调用timegpt模块中的forecast函数,对时间序列数据进行预测# 将预测结果赋值给变量timegpt_fcst_finetune_dftimegpt_fcst_finetune_df = timegpt.forecast(df=df, h=h, finetune_steps=finetune_steps, time_col=time_col, target_col=target_col)# 返回预测结果return timegpt_fcst_finetune_df
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
INFO:nixtlats.timegpt:Calling Forecast Endpoint...
# 导入timegpt模块中的plot函数# 使用plot函数绘制图表,传入以下参数:
# - df: 原始数据集,包含时间戳和值两列
# - timegpt_fcst_finetune_df: 经过时间序列预测和微调后的数据集,包含时间戳和预测值两列
# - time_col: 时间戳所在的列名
# - target_col: 值所在的列名
timegpt.plot(df, timegpt_fcst_finetune_df, time_col='timestamp', target_col='value',
)

在这段代码中,finetune_steps=10表示模型将在您的时间序列数据上进行10次训练迭代。

请记住,微调可能需要一些试错。您可能需要根据您的特定需求和数据的复杂性来调整finetune_steps的数量。建议在微调过程中监控模型的性能并根据需要进行调整。请注意,更多的finetune_steps可能会导致更长的训练时间,并且如果管理不当可能会导致过拟合。

请记住,微调是一个强大的功能,但应该谨慎使用。

这篇关于工具系列:TimeGPT_(5)特定领域微调模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545756

相关文章

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

sqlite3 命令行工具使用指南

《sqlite3命令行工具使用指南》本文系统介绍sqlite3CLI的启动、数据库操作、元数据查询、数据导入导出及输出格式化命令,涵盖文件管理、备份恢复、性能统计等实用功能,并说明命令分类、SQL语... 目录一、启动与退出二、数据库与文件操作三、元数据查询四、数据操作与导入导出五、查询输出格式化六、实用功