DataWhale-(动手学数据分析)-Task01(数据加载及探索性数据分析)-202201

本文主要是介绍DataWhale-(动手学数据分析)-Task01(数据加载及探索性数据分析)-202201,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动手学数据分析

1第一节:数据加载

1.1 载入数据

数据集下载 https://www.kaggle.com/c/titanic/overview

1.1.1 任务一:导入numpy和pandas
import numpy as np
import pandas as pd
1.1.2 任务二:载入数据
df=pd.read_csv('train.csv')
df.head(3)
1.1.3 任务三:每1000行一个数据模块,逐块读取
chunker = pd.read_csv('train.csv',chunksize=1000)
1.1.4 任务四:将表头改成中文,索引改为乘客ID
df = pd.read_csv('train.csv', names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header=0)
df.head()

1.2 初步观察

1.2.1 任务一:查看数据的基本信息
df.info()
1.2.2 任务二:观察表格前10行的数据和后15行的数据
df.head(10)
df.tail(15)
1.2.3 任务三:判断数据是否为空,为空的地方返回True,其余地方返回False
df.isnull().head()

1.3 保存数据

1.3.1 任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv
df.to_csv('train_chinese.csv', encoding='utf-8')

第二节:pandas基础

1.4 知道你的数据叫什么

1.4.1 任务一:pandas 中有两个数据类型DataFrame和Series
import numpy as np
import pandas as pdsdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],'year': [2000, 2001, 2002, 2001, 2002, 2003],'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
example_2 = pd.DataFrame(data)
example_2
1.4.2 任务二:载入"train.csv"文件
df = pd.read_csv('train.csv')
df.head(3)
1.4.3 任务三:查看DataFrame数据的每列的名称
df.columns
1.4.4 任务四:查看"Cabin"这列的值
df['Cabin'].head(10)
df.Cabin.head(3)
1.4.5 任务五:加载文件"test_1.csv",然后对比"train.csv",看看有哪些多出的列,然后将多出的列删除
test_1 = pd.read_csv('test_1.csv')
test_1.head(3)
# 删除多余的列
del test_1['a']
test_1.head(3)
1.4.6 任务六: 将[‘PassengerId’,‘Name’,‘Age’,‘Ticket’]这几个列元素隐藏,只观察其他几个列元素
df.drop(['PassengerId','Name','Age','Ticket'],axis=1).head(3)

1.5 筛选的逻辑

1.5.1 任务一: 我们以"Age"为筛选条件,显示年龄在10岁以下的乘客信息。
df[df["Age"]<10].head(3)
1.5.2 任务二: 以"Age"为条件,将年龄在10岁以上和50岁以下的乘客信息显示出来,并将这个数据命名为midage
midage = df[(df["Age"]>10)& (df["Age"]<50)]
midage.head(3)
1.5.3 任务三:将midage的数据中第100行的"Pclass"和"Sex"的数据显示出来
midage.iloc[100][['Pclass','Sex']]
1.5.4 任务四:使用iloc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来
midage.iloc[[100,105,108]][['Pclass','Name','Sex']]

第三节:探索性数据分析

#加载所需的库
import numpy as np
import pandas as pd#载入之前保存的train_chinese.csv数据,关于泰坦尼克号的任务,我们就使用这个数据
text = pd.read_csv('train_chinese.csv')
text.head()

1.6 了解你的数据吗?

教材《Python for Data Analysis》第五章

1.6.1 任务一:利用Pandas对示例数据进行排序,要求升序
#自己构建一个都为数字的DataFrame数据
frame = pd.DataFrame(np.arange(8).reshape((2, 4)), index=['2', '1'], columns=['d', 'a', 'b', 'c'])# 大多数时候我们都是想根据列的值来排序,所以,将你构建的DataFrame中的数据根据某一列,升序排列
frame.sort_values(by='c', ascending=True)
1.6.2 任务二:对泰坦尼克号数据(trian.csv)按票价和年龄两列进行综合排序(降序排列),从数据中你能发现什么
text.sort_values(by=['票价', '年龄'], ascending=False).head(3)
1.6.4任务四:通过泰坦尼克号数据如何计算出在船上最大的家族有多少人?
'''
还是用之前导入的chinese_train.csv如果我们想看看在船上,最大的家族有多少人(‘兄弟姐妹个数’+‘父母子女个数’),我们该怎么做呢?
'''
max(text['兄弟姐妹个数'] + text['父母子女个数'])
1.6.6 任务六:分别看看泰坦尼克号数据集中 票价、父母子女 这列数据的基本统计数据,你能发现什么?
text['票价'].describe()

这篇关于DataWhale-(动手学数据分析)-Task01(数据加载及探索性数据分析)-202201的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544383

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口