Python - 深夜数据结构与算法之 Divide Conquer Backtrack

2023-12-26 09:04

本文主要是介绍Python - 深夜数据结构与算法之 Divide Conquer Backtrack,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.引言

二.分治与回溯简介

1.Divide & Conquer 分治

2.BackTrack 回溯

三.经典算法实战

1.Combination-Of-Phone [17]

2.Permutations [46]

3.Permutations-2 [47]

4.Pow-X [50]

5.N-Queen [51]

6.Combinations [78]

7.Sub-Sets [78]

8.Majority-Element [169]

四.总结


一.引言

分治与回溯本质上也是递归的一种,其相对传统递归稍微复杂一些,涉及到最后一步状态的恢复,下面我们学习下二者的特性与题目。

二.分治与回溯简介

1.Divide & Conquer 分治

分治的思路整体和递归是一样的,我们需要先将 Problem 转化为子问题 Sub-Problem,然后针对每个 Sub-Problem 进行解决,最后将多个 Sub-Solution 合并得到最终结果,下面的代码模版就是按照上面的思路来实现。

2.BackTrack 回溯

基于 base 情况,不断向前试探,试探成功找到结果,试探失败回撤,并且恢复上一步的状态。 

三.经典算法实战

1.Combination-Of-Phone [17]

电话号码组合: https://leetcode.cn/problems/letter-combinations-of-a-phone-number/description/

◆ 题目分析

分别获取数字及其对应的字符,逐层遍历即可。

◆ 回溯实现

class Solution(object):def letterCombinations(self, digits):""":type digits: str:rtype: List[str]"""if not digits:return []phone_map = {"2": "abc","3": "def","4": "ghi","5": "jkl","6": "mno","7": "pqrs","8": "tuv","9": "wxyz"}combination = []res = []def backtrack(position):if position == len(digits):res.append("".join(combination))return # 遍历当前数字的多个字母digit = digits[position]for letter in phone_map[digit]:combination.append(letter)backtrack(position + 1)combination.pop()backtrack(0)return res

人肉递归的方式可以参考这个图理解。 

2.Permutations [46]

全排列: https://leetcode-cn.com/problems/permutations/

◆ 题目分析

按照回溯思路实现,从 0 到 len(nums) 固定每个位置,将该元素与其后方元素依次调换位置,直至最后一个元素即可。

◆ 回溯实现

class Solution(object):def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []def backtrack(position, end):if position == end:res.append(nums[:])returnfor i in range(position, end):nums[i], nums[position] = nums[position], nums[i]backtrack(position + 1, end)nums[i], nums[position] = nums[position], nums[i]backtrack(0, len(nums))return res

第一次循环遍历位置 0,因为 replace 的原因,所以位置 0 上每个元素都会出现一次,在该基础上,固定第一个位置,分别将剩余元素分别替换至位置 1,以此类推。可以理解为第一次循环把位置 0 的所有可能遍历一遍, [0] [1] [2] 这样,第二次基于前面的基础 [0, 1] [0,2]、[1,0] [1, 2] 这样,... 以此类推。 

3.Permutations-2 [47]

全排列2: https://leetcode.cn/problems/permutations-ii/

◆ 题目分析

按照回溯思路实现,从 0 到 len(nums) 固定每个位置,将该元素与其后方元素依次调换位置,直至最后一个元素即可。和上面方法一致。

◆ 回溯实现

class Solution(object):def permuteUnique(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []# 回溯起始位置def backtrack(position, end):if position == end:res.append(nums[:])returnfor i in range(position, end):# position 位置的 N 种可能nums[position],nums[i] = nums[i], nums[position]# 固定 position 位置,在此基础上固定 position + 1 的位置backtrack(position + 1, end)# 回复原始状态供后面 position 从初始状态遍历nums[position],nums[i] = nums[i], nums[position]backtrack(0, len(nums))res = list(set(tuple(sub) for sub in res))res = [list(sub) for sub in res]return res

在上一题的基础上进行去重,set 支持 tuple 不支持 list 去重,所以需要转换,时空复杂度都比较高。

◆ 去重优化

class Solution(object):def permuteUnique(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []# 回溯起始位置def backtrack(position, end):if position == end:res.append(nums[:])returnrepeat = set()for i in range(position, end):if nums[i] in repeat:continuerepeat.add(nums[i])# position 位置的 N 种可能nums[position],nums[i] = nums[i], nums[position]# 固定 position 位置,在此基础上固定 position + 1 的位置backtrack(position + 1, end)# 回复原始状态供后面 position 从初始状态遍历nums[position],nums[i] = nums[i], nums[position]backtrack(0, len(nums))return res

最后全局去重的时间、空间复杂度都很高,我们修改为递归内判断,在 for 循环之前增加 set,如果 position-end 区间有相同元素则直接 continue 跳过即可。

4.Pow-X [50]

求 x 的 n 次方: https://leetcode.cn/problems/powx-n/description/

◆ 题目分析

Problem =  2^10,sub-problem = 2^5,我们处理的话就是 2^ (n/2)

Problem = 2^5,sub-problem = 2^2,我们处理的话还是 2^ (n/2),但是遗漏一个 2

所以我们还需要区分 n/2 是否整除,整除 x^n = x^(n/2) * x^(n/2) 不整除则再多乘一个 2。

◆ 递归实现

class Solution(object):def myPow(self, x, n):""":type x: float:type n: int:rtype: float"""# x^0 == 1if n == 0:return 1.0if n == 1:return xif n == -1:return 1 / xhalf = self.myPow(x, int(n / 2))rest = self.myPow(x, n % 2)return half * half * rest

 half 负责将 2^n 减半,rest 负责检查是否需要补充一个 2。

5.N-Queen [51]

N 皇后: https://leetcode.cn/problems/n-queens/description/

◆ 题目分析

给定 n x n 的棋盘放置皇后,要求其上下左右和对角线都不可以放置其他皇后,观察棋盘坐标,我们可以发现是否同一行同一列比较简单,row / col 相等即可,对于左右 45° 的对角线,我们可以通过 row col 组合获取,这里我们称为撇 pie 和捺 na,pie 上的元素 row + col 都相同,na 上的元素 row - col 都相同,这样通过 row、col 我们即可判断所有可行的情况,剩下递归即可。 

◆ 回溯实现 

class Solution(object):def solveNQueens(self, n):""":type n: int:rtype: List[List[str]]"""results = []# 行 左 右 是否可以放置cols = set()pie = set()na = set()def dfs(n, row, cur):if row >= n:results.append(cur)for col in range(n):if col in cols or (row + col) in pie or (row - col) in na:continue# 判断有效cols.add(col)pie.add(row + col)na.add(row - col)dfs(n, row + 1, cur + [col])# 恢复状态cols.remove(col)pie.remove(row + col)na.remove(row - col)dfs(n, 0, [])return self.genResult(n, results)def genResult(self, n, results):return [[ '.' * i + 'Q' + (n - i - 1) * '.' for i in result] for result in results]def genResultV2(self, n, results):re = []for result in results:re.append([ '.' * i + 'Q' + (n - i - 1) * '.' for i in result])return re

这里最后获取 results 后还需要给出棋盘的形态,所以我们需要根据索引构建 '.' 和 'Q' 的关系。

6.Combinations [78]

组合: https://leetcode.cn/problems/combinations/description/

◆ 题目分析

固定第一个数字,向后遍历其他结果,待数量达到 k 停止,再回溯,固定下一个数字,向后寻找结果,直到 n-k 时再循环一次结束。

◆ 回溯实现

class Solution(object):def combine(self, n, k):res = []self.get_combine(res, [], n, k, 1)return resdef get_combine(self, res, prefix, n, k, start):if k == 0:# K 个结果找到了res.append(list(prefix))elif start <= n:# 添加当前结果prefix.append(start)# 添加完 start , 还需要 k-1 个, start + 1 去重self.get_combine(res, prefix,n, k - 1, start + 1)# 恢复状态,还需要 k 个,从 start + 1 开始prefix.pop()self.get_combine(res, prefix,n, k, start + 1)

其运行过程可以参考下图,固定 1 之后,start_index 一直向后查找添加 [1, 2]、[1, 3]、[1, 4] 后,start_index 为 5,[1] 结束,pop 得到 [],start_index + 1,再固定 2 从 2 开始 ... 

◆ 树形结合

class Solution(object):def combine(self, n, k):res = []com = []def backtracking(n, k, start_index):if len(com) == k:res.append(com[:])return # 因为全排列不包含 0,所以最后 + 1for num in range(start_index, n + 1):com.append(num)backtracking(n, k, num + 1) # 递归com.pop() # 回溯backtracking(n, k, 1)return res

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。

图中可以发现 n 相当于树的宽度,k 相当于树的深度,代码遵照下述思路完成。

◆ 剪枝优化

class Solution(object):def combine(self, n, k):res = []com = []def backtracking(n, k, start_index):if len(com) == k:res.append(com[:])return last_index = n - (k - len(com)) + 1# 因为全排列不包含 0,所以最后 + 1for num in range(start_index, last_index + 1):com.append(num)backtracking(n, k, num + 1) # 递归com.pop() # 回溯backtracking(n, k, 1)return res

本题还可以通过剪枝进行优化,对于遍历而言,当 n=4、k=2 时,我们就没有必要再从 4 开始遍历了,因为后面已经不足以拼到 2 个数字了,所以我们优化一下循环的次数 n - (k - len(com)) + 1。

7.Sub-Sets [78]

子集: https://leetcode.cn/problems/subsets/description/ 

◆ 题目分析

遍历多种情况, 假设 [1, 2, 3],我们可以先遍历 [1] 生成所有情况,再遍历 [2] 和之前的情况结合并添加,随后继续,每次结果都会翻倍,因为新的数字会和之前的每个结果生成一个新的结果并添加。

◆ 循环实现

class Solution(object):def subsets(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = [[]]# 遍历每个数字for i in nums:res = res + [[i] + re for re in res]return res

8.Majority-Element [169]

多数元素: https://leetcode-cn.com/problems/majority-element/description/

◆ 题目分析

第一感觉是 wordcount 直接判断即可,但是既然出在回溯和分治的章节,说明其还有其他方法,我们两种方法尝试下。

◆ 字典计数

class Solution(object):def majorityElement(self, nums):""":type nums: List[int]:rtype: int"""limit = len(nums) / 2count = {}for i in nums:if i not in count:count[i] = 0# 判断是否超过 n/2if count[i] + 1 > limit:return ielse:count[i] += 1return 0

 计数判断即可。

◆ 分治实现

class Solution:def majorityElement(self, nums):def backtrack(lo, hi):# base case; the only element in an array of size 1 is the majority# element.if lo == hi:return nums[lo]# recurse on left and right halves of this slice.mid = (hi - lo) // 2 + loleft = backtrack(lo, mid)right = backtrack(mid + 1, hi)# if the two halves agree on the majority element, return it.if left == right:return left# otherwise, count each element and return the "winner".left_count = sum(1 for i in range(lo, hi + 1) if nums[i] == left)right_count = sum(1 for i in range(lo, hi + 1) if nums[i] == right)return left if left_count > right_count else rightreturn backtrack(0, len(nums) - 1)

如果数 a 是数组 nums 的众数,如果我们将 nums 分成两部分,那么 a 必定是至少一部分的众数,所以题目将数组不断拆分,并获取两个部分的众数,这里不是太推荐使用分治法,因为这个场景复杂度太高。

四.总结

本文介绍了回溯和分治的思想和算法题目,观察上面的算法题目,我们可以发现其在代码上都遵循了简介中的模版而且写起来很相似,所以还是要多花时间去体会题目的要求的实现的方法,多巩固多练习。

这篇关于Python - 深夜数据结构与算法之 Divide Conquer Backtrack的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538811

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1