Codevs 1070 普通递归关系(矩阵乘法)

2023-12-25 15:48

本文主要是介绍Codevs 1070 普通递归关系(矩阵乘法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1070 普通递归关系
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 大师 Master
题目描述 Description
考虑以下定义在非负整数n上的递归关系
f(n) = f0 (if n = 0)
= f1 (if n = 1)
= a*f(n-1)+b*f(n-2) otherwise
其中a,b是满足以下两个条件的常数:
(1) a2+4b>0
(2) |a-sqrt(a2+4b)| <= 2 // sqrt是根号的意思
给定f0,f1, a, b和n,请你写一个程序计算fn,可以假定fn是绝对值不超过109的整数(四舍五入)。
输入描述 Input Description
输入文件一行依次给出5个数,f0, f1, a, b和n, f0,f1是绝对值不超过109,n是非负整数,不超过109。另外,a、b是满足上述条件的实数,且|a|,|b|<=106。
输出描述 Output Description
输出f(n)
样例输入 Sample Input
【样例输入1】
0 1 1 1 20
【样例输入2】
0 1 -1 0 1000000000
【样例输入3】
-1 1 4 -3 18
样例输出 Sample Output
【样例输出1】
6765
【样例输出2】
-1
【样例输出3】
387420487
数据范围及提示 Data Size & Hint
见输入描述
分类标签 Tags
矩阵乘法 数论

/*
矩阵乘法.
斐波那契变式.
这样刷水题真的好吗...
注意是double
而且有一个很坑的数据...
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL n;
double a1,b1,f0,f1,a[3][3],b[3][3],c[3][3],ans[3][3];
void mi()
{
    while(n)
    {
        if(n&1)
        {
            for(int i=1;i<=2;i++)
              for(int j=1;j<=2;j++)
                for(int k=1;k<=2;k++)
                  c[i][j]=c[i][j]+ans[i][k]*b[k][j];
            for(int i=1;i<=2;i++)
              for(int j=1;j<=2;j++)
                ans[i][j]=c[i][j],c[i][j]=0.0;
        }
        for(int i=1;i<=2;i++)
          for(int j=1;j<=2;j++)
            for(int k=1;k<=2;k++)
              c[i][j]=c[i][j]+b[i][k]*b[k][j];
        for(int i=1;i<=2;i++)
          for(int j=1;j<=2;j++)
            b[i][j]=c[i][j],c[i][j]=0.0;
        n>>=1;
    }
}
void slove()
{
    ans[1][1]=f1,ans[1][2]=f0;
    b[1][1]=a1,b[2][1]=b1,b[1][2]=1;
    mi();
    int x=(int)ans[1][2];
    cout<<x;
}
int main()
{
    cin>>f0>>f1>>a1>>b1>>n;
    if(f0==0.0&&f1==0.0) printf("0");
    else slove();
    return 0;
}

这篇关于Codevs 1070 普通递归关系(矩阵乘法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536049

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

mysql递归查询语法WITH RECURSIVE的使用

《mysql递归查询语法WITHRECURSIVE的使用》本文主要介绍了mysql递归查询语法WITHRECURSIVE的使用,WITHRECURSIVE用于执行递归查询,特别适合处理层级结构或递归... 目录基本语法结构:关键部分解析:递归查询的工作流程:示例:员工与经理的层级关系解释:示例:树形结构的数

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR