DEA数据包络分析

2023-12-25 05:15
文章标签 分析 数据 包络 dea

本文主要是介绍DEA数据包络分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据包络分析(Data Envelopment Analysis,DEA),1978年由 Charnes、Cooper和Rhodes创建的一种绩效评价技术(performance technique) 。采用多投入、多产出数据对多个决策单元(Decision Making Unit) 的相对效率进行评价因DEA的诸多优势,被广泛应用于效率和生产率评价。其中,包络的意思是对不同决策单元进行效率评价时的参照系(前沿面【构造一个最优的或最好的标准】),把每一个个体与包络线之间进行一个比较,然后进行分析。包络在微观经济学中通常讲长期的平均成本曲线是短期平均成本曲线的包络线(长期成本比短期成本低)。

一、DEA相关概念

1、DMU(决策单元)

决策单元是指可以将一定的输入转化为相应的产出的运营实体,并且每一个决策单元都有m种输入和s种输出。
决策单元用效率(用)评估其好坏,产出越大越好,投入越节省越好。
特点:同类型、同输入指标、同输出指标。如:浙江、江苏这种都是省级别,只有同类型的决策单元才可以相互比较,否则无法比较
数量:DMU变量数量≥指标数的3倍。DMU数量过少容易导致很多DMU都在前沿面上,模型最终效果不精准

2、角度(导向)选择

投入导向:在产出不变的情况下,投入减少多少,效率达到有效。
产出导向:在投入不变的情况下,增加产出多少,效率达到有效。
非导向:同时从产出、投入角度处理,使效率达到有效。
投入导向问题时,产出可以有负数和0,投入不能有负数和0
产出导向问题时,投入不可以有负数和0,产出可以有负数和0
非导向问题时,投入和导出都不能有负数和0

3、规模报酬选择:CRS与VRS

CRS和VRS是两个常用的模型。它们都是用于评估 DMU的技术效率,即通过比较每个 DMU 的输入和输出,确定每个 DMU 是否有效率。CRS 模型假设生产者的规模效率是恒定的,即输入量和输出量呈线性比例关系(投入增加一个倍数,产出增加相同的倍数)。VRS 模型相对于 CRS 模型而言更加通用,因为它假设生产者的规模效率是可变的,即输入量和输出量呈非线性比例关系。即CRS(规模报酬可变:折线)、VRS(规模报酬不可变:虚线)
在这里插入图片描述

4、效率前言(前沿面)

在这里插入图片描述
决策单元A和D/F,E和F谁好?如何衡量DMU的好坏?-------前沿面

1)单投入单投出

在这里插入图片描述

2)两投入单产出

在这里插入图片描述
前沿面构造如下:
在这里插入图片描述

3)单投入两产出

在这里插入图片描述
前沿面构造如下:
在这里插入图片描述
通过改进距离来评价效率
在这里插入图片描述
前沿面分:当期、全局
当期:所有的个体当期的投入产出数据构造一个前沿面来评价这一年的效率
全局:所有时期的投入产出数据构造一个前沿面来评价这一年的效率

5、模型选择

模型选择:径向、非径向
径向问题:等比例投影(固定比例缩小/扩张)
非径向问题:不等比例投影(不固定比例缩小/扩张)
混合问题:既考虑径向又考虑非径向

6、标准效率模型、超效率模型

在这里插入图片描述
标准效率模型,超效率模型(标准效率模型效率值最大就是1,效率值都为1的进行排序用到超效率模型)
A、B、C、D都是在前沿面上,效率值都为1,谁的效率更高?
假设计算C点的效率,前沿面为ABD,C的效率等于>1
计算B/D点的效率,前沿面为ACD/ABC,B/D的效率等于1

二、CCR模型

1978年,Charnes、Cooper和Rhodes提出了DEA理论方法,以三人姓氏的首字母命名他们创立的第一个DEA模型,即CCR模型。
CCR模型:当期、标准效率、投入导向
在这里插入图片描述
在这里插入图片描述CCR模型:全局、标准效率、投入导向
在这里插入图片描述
CCR模型:当期、标准效率、产出导向
在这里插入图片描述
CCR模型:全局、标准效率、产出导向
在这里插入图片描述
CCR模型:当期、超效率、投入导向
超效率与标准效率区别就是超效率剔除了自己本身数据
在这里插入图片描述

三、BCC模型

1984年,Banker、Charnes和Cooper基于规模报酬可变的假设拓展了DEA方法,即BCC模型。
在这里插入图片描述

四、SBM模型

Tone 于2001年提出了SBM模型(SlackBased Measure) ,其优点是解决了径向模型对无效率的测量没有包含松弛变量的问题。
在这里插入图片描述
x:投入 y:产出
产出松弛:S----弱有效,因为投入不变(X)的情况下,产出可以增加到更大,产出冗余(----A)
投入松弛:E----弱有效,因为投入不变(X1)的情况下,投入x2可以继续减少,投入冗余(----B)
在这里插入图片描述
SBM模型:当期、标准效率、投入导向
在这里插入图片描述SBM模型:当期、标准效率、产出导向
在这里插入图片描述
SBM模型:当期、标准效率、非导向
在这里插入图片描述

五、传统DEA-python实现

import gurobipy #规划求解包
import pandas as pd#DMUs_Name:决策单元,X:投入数据;Y:产出数据
class DEA(object):def __init__(self, DMUs_Name, X, Y, AP=False):self.m1, self.m1_name, self.m2, self.m2_name, self.AP = X.shape[1], X.columns.tolist(), Y.shape[1], Y.columns.tolist(), AP  # shape 行数  columns.tolist列名self.DMUs, self.X, self.Y = gurobipy.multidict({DMU: [X.loc[DMU].tolist(), Y.loc[DMU].tolist()] for DMU in DMUs_Name})print(f'DEA(AP={AP}) MODEL RUNING...')def __CCR(self):for k in self.DMUs:MODEL = gurobipy.Model()#MODEL.addVar()函数用于添加单个变量。可以通过设置参数来指定变量的下界(lb)、上界(ub)、类型(vtype)和名称(name)等属性。#MODEL.addVars()函数用于添加多个变量。可以通过设置参数来指定变量的下界(lb)、上界(ub)、类型(vtype)和名称(name)等属性。OE, lambdas, s_negitive, s_positive = MODEL.addVar(), MODEL.addVars(self.DMUs), MODEL.addVars(self.m1), MODEL.addVars(self.m2) #addVar()创建一个变量,addVars()创建多个变量MODEL.update() ## 更新变量环境MODEL.setObjectiveN(OE, index=0, priority=1) #多目标优化MODEL.setObjectiveN(-(sum(s_negitive) + sum(s_positive)), index=1, priority=0) #创建多个常规一次/二次/等式约束MODEL.addConstrs(gurobipy.quicksum(lambdas[i] * self.X[i][j] for i in self.DMUs if i != k or not self.AP) + s_negitive[j] == OE * self.X[k][j] for j in range(self.m1))MODEL.addConstrs(gurobipy.quicksum(lambdas[i] * self.Y[i][j] for i in self.DMUs if i != k or not self.AP) - s_positive[j] == self.Y[k][j] for j in range(self.m2))MODEL.setParam('OutputFlag', 0)MODEL.optimize() #执行线性规划模型self.Result.at[k, ('效益分析', '综合技术效益(CCR)')] = MODEL.objValself.Result.at[k, ('规模报酬分析','有效性')] = '非 DEA 有效' if MODEL.objVal < 1 else 'DEA 弱有效' if s_negitive.sum().getValue() + s_positive.sum().getValue() else 'DEA 强有效'self.Result.at[k, ('规模报酬分析','类型')] = '规模报酬固定' if lambdas.sum().getValue() == 1 else '规模报酬递增' if lambdas.sum().getValue() < 1 else '规模报酬递减'for m in range(self.m1):self.Result.at[k, ('差额变数分析', f'{self.m1_name[m]}')] = s_negitive[m].Xself.Result.at[k, ('投入冗余率', f'{self.m1_name[m]}')] = 'N/A' if self.X[k][m] == 0 else s_negitive[m].X / self.X[k][m]for m in range(self.m2):self.Result.at[k, ('差额变数分析', f'{self.m2_name[m]}')] = s_positive[m].Xself.Result.at[k, ('产出不足率', f'{self.m2_name[m]}')] = 'N/A' if self.Y[k][m] == 0 else s_positive[m].X / self.Y[k][m]return self.Resultdef __BCC(self):for k in self.DMUs:MODEL = gurobipy.Model()TE,lambdas = MODEL.addVar(), MODEL.addVars(self.DMUs) #addVar()创建一个变量,addVars()创建多个变量MODEL.update()  ## 更新变量环境MODEL.setObjective(TE,sense=gurobipy.GRB.MINIMIZE)##单目标优化;目标函数:最小化TE# 创建约束条件MODEL.addConstrs(gurobipy.quicksum(lambdas[i] * self.X[i][j] for i in self.DMUs if i != k or not self.AP) <= TE * self.X[k][j] for j in range(self.m1))MODEL.addConstrs(gurobipy.quicksum(lambdas[i] * self.Y[i][j] for i in self.DMUs if i != k or not self.AP) >= self.Y[k][j] for j in range(self.m2))MODEL.addConstr(gurobipy.quicksum(lambdas[i] for i in self.DMUs if i != k or not self.AP) == 1)MODEL.setParam('OutputFlag', 0) #求解日志关闭 #去掉计算过程,只取最后结果;MODEL.optimize() #执行线性规划模型self.Result.at[k, ('效益分析', '技术效益(BCC)')] = MODEL.objVal if MODEL.status == gurobipy.GRB.Status.OPTIMAL else 'N/A' #MODEL.objVal输出结果#MODEL.status == gurobipy.GRB.Status.OPTIMAL 模型是否取得最优解return self.Resultdef dea(self):columns_Page = ['效益分析'] * 3 + ['规模报酬分析'] * 2 + ['差额变数分析'] * (self.m1 + self.m2) + ['投入冗余率'] * self.m1 + ['产出不足率'] * self.m2columns_Group = ['技术效益(BCC)', '规模效益(CCR/BCC)', '综合技术效益(CCR)', '有效性', '类型'] + (self.m1_name + self.m2_name) * 2self.Result = pd.DataFrame(index=self.DMUs, columns=[columns_Page, columns_Group])self.__CCR()self.__BCC()self.Result.loc[:, ('效益分析', '规模效益(CCR/BCC)')] = self.Result.loc[:, ('效益分析', '综合技术效益(CCR)')] / self.Result.loc[:,('效益分析','技术效益(BCC)')]return self.Resultdef analysis(self, file_name=None):Result = self.dea()file_name = r'分析结果.xlsx'Result.to_excel(file_name, 'DEA数据包络分析报告')if __name__ == '__main__':io = r"DEA.xlsx"  #读取数据x = pd.read_excel(io, sheet_name = 0, usecols = [1])  # 导入投入数据y = pd.read_excel(io, sheet_name = 0, usecols = [2,3,4])  # 导入产出数据country = pd.read_excel(io, sheet_name = 0, usecols = [0]) data = DEA(DMUs_Name= range(0,30), X=x, Y=y)data.analysis()
#     print(data.dea())

这篇关于DEA数据包络分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534357

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分