杜克大学开源 AI 算法,让马赛克图片秒变高清!

2023-12-24 14:08

本文主要是介绍杜克大学开源 AI 算法,让马赛克图片秒变高清!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号关注 “GitHubDaily”

设为 “星标”,每天带你逛 GitHub!

大家好,我是小 G。

在这个追求高清画质的时代,我们对渣画质的容忍度越来越低。

在知乎上搜索「低分辨率」、「渣画质」,会看到一大片诸如「如何补救清晰度低的照片」、「如何拯救渣画质」之类的问题。

那么,将渣到马赛克级别的画面秒变高清,是一种怎样的体验?杜克大学的研究人员用 AI 算法告诉你。

GitHub 链接:https://github.com/adamian98/pulse

 前所未有,「马赛克」瞬间变高清

杜克大学的研究人员提出了一种 AI 算法,称之为 PULSE(Photo Upsampling via Latent Space Exploration,通过潜在空间探索的照片上采样)。

该算法可以将模糊、无法识别的人脸图像转换成计算机生成的图像,其细节比之前任何时候都更加精细、逼真。

根据输入的低分辨率图片,系统会生成一系列高清图像

如果用以前的方法,想要把一张模糊的「大头照」变清晰,最多只能将这张照片缩放到原始分辨率的八倍。

但是杜克大学的团队提出了一种新的方法,仅在几秒钟内,就可以把 16x16 像素的低分辨率(Low Resolution,以下简称 LR)小图,放大 64 倍,变成 1024 x 1024 像素的高分辨率(High Resolution,以下简称 HR)图像

他们的 AI 工具会「想象」出一些原本不存在的特征,即使是原本 LR 照片中无法看到的细节,比如毛孔、细纹、睫毛、头发和胡茬等,经过其算法处理后,都能看得一清二楚。

来看一个具体示例:

左图为原始低分辨率图像,右图为系统创建的高清图像

领导该团队的杜克大学计算机科学家辛西娅・鲁丁(Cynthia Rudin)说:「以前从来没有像现在这样,能用这么少的像素,就创造出拥有大量细节的超分辨率图像。」

在实际应用方向上,论文的共同作者 Sachit Menon 介绍称:「在这些研究中,我们只是用面部作为概念验证。

但从理论上讲,该技术是通用的,从医学、显微镜学到天文学和卫星图像,都可以通过该技术改善画质。」

 打破传统操作,实现最佳效果

虽说此前已经有很多类似的低清变高清的方法,但能够达到像素放大 64 倍级别的,还是业界首次。

 传统方法:像素匹配,易出 bug

传统方法处理此类问题时,一般拿到 LR 图像后,会「猜测」需要多少额外的像素,然后试着将此前处理过的 HR 图像中相应的像素,匹配给 LR 图像。

而这种单纯匹配像素的结果是,像头发和皮肤的纹理这种区域,会出现像素匹配错位的现象。

而且该方法还会忽略了 HR 图像中,感光性等感知细节。所以最终在平滑度、感光度上出现问题,结果依然会显得模糊或者不真实。

之前的一些方法,部分生成结果有点诡异

 新方法:低清图像「连连看」 

杜克大学的团队则提出的新方法,可以说是开辟了新的思路。

在拿到一张 LR 图像后,PULSE 系统不会慢慢添加新的细节,而是遍历 AI 生成的 HR 图像,将这些 HR 图像对应的 LR 图像与原图对比,找到最接近的那张。

打个比方,相当于拿 LR 图片做个「连连看」,找到最相似的 LR 版本,那么再反推回去,这张 LR 图像所对应的 HR 图像,就是最终要输出的结果。

原始 LR 图片(上),PULSE 输出的 HR 图片(中)

HR 图片对应的 LR 图(下)

团队使用了生成对抗网络(简称 GAN ),它包括对同一张照片数据集进行训练的两个神经网络,即生成器与鉴别器。

其中,生成器模拟它所受过训练的人脸,提供 AI 创建的人脸,而鉴别器则获得了该输出,并确定它是否足以以假乱真。

随着经验的积累,生成器的经验会越来越好,直到鉴别器无法分辨出差异。

他们用一些真实图像进行试验,效果对比如下图所示:

上排为真实图片,中排为将真实图片下采样而来 LR 图像

下排为 PULSE 根据 LR 图像生成的 HR 图像

虽然生成的高分辨率图与原图仍有一些差距,但是这比以前的方法要清晰很多。

 评估:优于其它方法,得分接近真实照片

团队在著名的高分辨率人脸数据集 CelebA HQ 上评估了其算法,用 64×,32× 和 8× 的比例因子进行了这些实验。

研究人员要求 40 个人对通过 PULSE 和其他五种缩放方法生成的 1440 张图像进行 1 到 5 的评分,而 PULSE 的效果最佳,得分几乎与真实的高质量照片一样高。

HR 为实际的高清人像数据集,得分仅比 PULSE 高 0.14

团队成员表示,PULSE 可以从嘈杂、低质量的输入中,创建逼真的图像,即使原图连眼睛、嘴巴都无法辨认。这是其他方法无法做到的。

与其它方法对比,PULSE 将细节处理得更为逼真

不过,该系统还不能用于识别身份,研究人员表示:「它无法将安全摄像头拍摄的失焦、不能识别的照片,变成真人的清晰图像。它仅会生成不存在但看上去很真实的新面孔。」

在具体应用场景上,除了上文提到的,该技术未来可能应用在医学、天文学之外,对于大众来说,拥有这项黑科技之后,就可以把 N 年前的老照片变高清。对于编辑同志们来说,更是一大福音,再也不用为找高清配图而头大了。

从此告别「画质感人」

温馨提示:研究人员还会在正在举行的 CVPR 2020(计算机视觉和模式识别会议)上介绍他们的方法,大家可以关注一下:

http://cvpr2020.thecvf.com/program/tutorials

论文地址:

https://arxiv.org/pdf/2003.03808.pdf

参考资料:

https://www.sciencedaily.com/releases/2020/06/200612111409.htm

---由 GitHubDaily 原班人马打造的公众号:GitCube,现已正式上线!
接下来我们将会在该公众号上,为大家分享优质的计算机学习资源与开发者工具,坚持每天一篇原创文章的输出,感兴趣的小伙伴可以关注一下哈!

这篇关于杜克大学开源 AI 算法,让马赛克图片秒变高清!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532021

相关文章

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.