基于MLP完成CIFAR-10数据集和UCI wine数据集的分类

2023-12-23 15:30

本文主要是介绍基于MLP完成CIFAR-10数据集和UCI wine数据集的分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于MLP完成CIFAR-10数据集和UCI wine数据集的分类,使用到了sklearn和tensorflow,并对图片分类进行了数据可视化展示

数据集介绍

UCI wine数据集:

http://archive.ics.uci.edu/dataset/109/wine

这些数据是对意大利同一地区种植的葡萄酒进行化学分析的结果,但来自三个不同的品种。该分析确定了三种葡萄酒中每一种中发现的13种成分的数量。

CIFAR-10数据集:

https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10 数据集由 10 类 60000 张 32x32 彩色图像组成,每类 6000 张图像。有 50000 张训练图像和 10000 张测试图像。

数据集分为 5 个训练批次和 1 个测试批次,每个批次有 10000 张图像。测试批次正好包含从每个类中随机选择的 1000 张图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类。在它们之间,训练批次正好包含来自每个类的 5000 张图像

MLP算法

MLP 代表多层感知器(Multilayer Perceptron),是一种基本的前馈神经网络(Feedforward Neural Network)模型。它由一个输入层、一个或多个隐藏层和一个输出层组成,其中每个层都包含多个神经元(或称为节点)。MLP 是一种强大的模型,常用于解决分类和回归问题。

MLP 的基本组成部分如下:

  • 输入层(Input Layer): 接收原始数据的输入层,每个输入节点对应输入特征。

  • 隐藏层(Hidden Layer):
    位于输入层和输出层之间的一层或多层神经元。每个神经元通过权重与前一层的所有节点相连接,并通过激活函数进行非线性变换。隐藏层的存在使得网络能够学习输入数据的复杂特征。

  • 输出层(Output Layer): 提供最终的网络输出。对于不同的问题,输出层的激活函数可能不同。例如,对于二分类问题,可以使用
    sigmoid 激活函数;对于多分类问题,可以使用 softmax 激活函数。

模型构建

UCI wine:

我们加载 sklearn.datasets 中的 load_wine作为训练数据,划分为数据集和测试集,并进行标准化操作

接着调用 MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000, random_state=42) 创建模型

训练后在测试集上预测,最后评估模型
在这里插入图片描述

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler# 加载Iris数据集
# iris = load_iris()
# X = iris.data
# y = iris.targetwine = load_wine()
X = wine.data
y = wine.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)# 构建MLP模型
mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000, random_state=42)# 训练模型
mlp.fit(X_train_scaled, y_train)# 在测试集上进行预测
y_pred = mlp.predict(X_test_scaled)# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)# 打印结果
print("Accuracy:", accuracy)
print("\nConfusion Matrix:\n", conf_matrix)
print("\nClassification Report:\n", class_report)

CIFAR-10:

我们使用 tf.keras.datasets.cifar10中自带的数据进行训练

使用 tf.keras.Sequential() 这个函数创建模型,设置四层网络

接着对代码进行批量训练,评估和保留模型后对结果进行可视化处理

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

########cifar10数据集##########
###########保存模型############
########卷积神经网络##########
#train_x:(50000, 32, 32, 3), train_y:(50000, 1), test_x:(10000, 32, 32, 3), test_y:(10000, 1)
#60000条训练数据和10000条测试数据,32x32像素的RGB图像
#第一层两个卷积层16个3*3卷积核,一个池化层:最大池化法2*2卷积核,激活函数:ReLU
#第二层两个卷积层32个3*3卷积核,一个池化层:最大池化法2*2卷积核,激活函数:ReLU
#隐含层激活函数:ReLU函数
#输出层激活函数:softmax函数(实现多分类)
#损失函数:稀疏交叉熵损失函数
#隐含层有128个神经元,输出层有10个节点
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as npimport time
print('--------------')
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
print(nowtime)#指定GPU
#import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# gpus = tf.config.experimental.list_physical_devices('GPU')
# tf.config.experimental.set_memory_growth(gpus[0],True)
#初始化
plt.rcParams['font.sans-serif'] = ['SimHei']#加载数据
cifar10 = tf.keras.datasets.cifar10
(train_x,train_y),(test_x,test_y) = cifar10.load_data()
print('\n train_x:%s, train_y:%s, test_x:%s, test_y:%s'%(train_x.shape,train_y.shape,test_x.shape,test_y.shape))#数据预处理
X_train,X_test = tf.cast(train_x/255.0,tf.float32),tf.cast(test_x/255.0,tf.float32)     #归一化
y_train,y_test = tf.cast(train_y,tf.int16),tf.cast(test_y,tf.int16)#建立模型
model = tf.keras.Sequential()
##特征提取阶段
#第一层
model.add(tf.keras.layers.Conv2D(16,kernel_size=(3,3),padding='same',activation=tf.nn.relu,data_format='channels_last',input_shape=X_train.shape[1:]))  #卷积层,16个卷积核,大小(3,3),保持原图像大小,relu激活函数,输入形状(28,28,1)
model.add(tf.keras.layers.Conv2D(16,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2,2)))   #池化层,最大值池化,卷积核(2,2)
#第二层
model.add(tf.keras.layers.Conv2D(32,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.Conv2D(32,kernel_size=(3,3),padding='same',activation=tf.nn.relu))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2,2)))
##分类识别阶段
#第三层
model.add(tf.keras.layers.Flatten())    #改变输入形状
#第四层
model.add(tf.keras.layers.Dense(128,activation='relu'))     #全连接网络层,128个神经元,relu激活函数
model.add(tf.keras.layers.Dense(10,activation='softmax'))   #输出层,10个节点
print(model.summary())      #查看网络结构和参数信息#配置模型训练方法
#adam算法参数采用keras默认的公开参数,损失函数采用稀疏交叉熵损失函数,准确率采用稀疏分类准确率函数
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['sparse_categorical_accuracy'])#训练模型
#批量训练大小为64,迭代5次,测试集比例0.2(48000条训练集数据,12000条测试集数据)
print('--------------')
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
print('训练前时刻:'+str(nowtime))history = model.fit(X_train,y_train,batch_size=64,epochs=5,validation_split=0.2)print('--------------')
nowtime = time.strftime('%Y-%m-%d %H:%M:%S')
print('训练后时刻:'+str(nowtime))#评估模型
model.evaluate(X_test,y_test,verbose=2)     #每次迭代输出一条记录,来评价该模型是否有比较好的泛化能力#保存整个模型
model.save('CIFAR10_CNN_weights.h5')#结果可视化
print(history.history)
loss = history.history['loss']          #训练集损失
val_loss = history.history['val_loss']  #测试集损失
acc = history.history['sparse_categorical_accuracy']            #训练集准确率
val_acc = history.history['val_sparse_categorical_accuracy']    #测试集准确率plt.figure(figsize=(10,3))plt.subplot(121)
plt.plot(loss,color='b',label='train')
plt.plot(val_loss,color='r',label='test')
plt.ylabel('loss')
plt.legend()plt.subplot(122)
plt.plot(acc,color='b',label='train')
plt.plot(val_acc,color='r',label='test')
plt.ylabel('Accuracy')
plt.legend()#暂停5秒关闭画布,否则画布一直打开的同时,会持续占用GPU内存
#根据需要自行选择
#plt.ion()       #打开交互式操作模式
#plt.show()
#plt.pause(5)
#plt.close()#使用模型
plt.figure()
for i in range(10):num = np.random.randint(1,10000)plt.subplot(2,5,i+1)plt.axis('off')plt.imshow(test_x[num],cmap='gray')demo = tf.reshape(X_test[num],(1,32,32,3))y_pred = np.argmax(model.predict(demo))plt.title('标签值:'+str(test_y[num])+'\n预测值:'+str(y_pred))
#y_pred = np.argmax(model.predict(X_test[0:5]),axis=1)
#print('X_test[0:5]: %s'%(X_test[0:5].shape))
#print('y_pred: %s'%(y_pred))#plt.ion()       #打开交互式操作模式
plt.show()
#plt.pause(5)
#plt.close()

项目地址

https://gitee.com/yishangyishang/homeword.git

这篇关于基于MLP完成CIFAR-10数据集和UCI wine数据集的分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/528520

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语