MNN学习笔记(五):caffe物体检测模型部署

2023-12-23 10:48

本文主要是介绍MNN学习笔记(五):caffe物体检测模型部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.模型转换

首先下载caffe模型,下载地址为:

https://github.com/C-Aniruddh/realtime_object_recognition

然后将caffe模型转换成mnn模型:

./MNNConvert -f CAFFE --modelFile MobileNetSSD_deploy.caffemodel --prototxt MobileNetSSD_deploy.prototxt --MNNModel mobilenetssd.mnn --bizCode MNN

2.模型部署

首先,进行初始化:模型载入并创建解释器,设置调度参数,设置后端参数,创建会话和图像处理参数配置

int MobilenetSSD::Init(const char * root_path) {std::cout << "start Init." << std::endl;std::string model_file = std::string(root_path) + "/mobilenetssd.mnn";mobilenetssd_interpreter_ = std::unique_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_file.c_str()));if (nullptr == mobilenetssd_interpreter_) {std::cout << "load model failed." << std::endl;return 10000;}MNN::ScheduleConfig schedule_config;schedule_config.type = MNN_FORWARD_CPU;schedule_config.numThread = 4;MNN::BackendConfig backend_config;backend_config.precision = MNN::BackendConfig::Precision_High;backend_config.power = MNN::BackendConfig::Power_High;schedule_config.backendConfig = &backend_config;mobilenetssd_sess_ = mobilenetssd_interpreter_->createSession(schedule_config);// image processerMNN::CV::Matrix trans;trans.setScale(1.0f, 1.0f);MNN::CV::ImageProcess::Config img_config;img_config.filterType = MNN::CV::BICUBIC;::memcpy(img_config.mean, meanVals_, sizeof(meanVals_));::memcpy(img_config.normal, normVals_, sizeof(normVals_));img_config.sourceFormat = MNN::CV::RGBA;img_config.destFormat = MNN::CV::RGB;pretreat_data_ = std::shared_ptr<MNN::CV::ImageProcess>(MNN::CV::ImageProcess::create(img_config));pretreat_data_->setMatrix(trans);std::string input_name = "data";input_tensor_ = mobilenetssd_interpreter_->getSessionInput(mobilenetssd_sess_, input_name.c_str());mobilenetssd_interpreter_->resizeTensor(input_tensor_, dims_);mobilenetssd_interpreter_->resizeSession(mobilenetssd_sess_);initialized_ = true;std::cout << "end Init." << std::endl;return 0;
}

然后,进行数据读入、模型推理和输出结果后处理

这里数据读入参考了资料[3],这里详细介绍了如何使用opencv读入数据,当然不止这一种,还有很多种读取方式

int MobilenetSSD::Detect(const cv::Mat & img_src, std::vector<ObjectInfo>* objects) {std::cout << "start detect." << std::endl;if (!initialized_) {std::cout << "model uninitialized." << std::endl;return 10000;}if (img_src.empty()) {std::cout << "input empty." << std::endl;return 10001;}int width = img_src.cols;int height = img_src.rows;// preprocesscv::Mat img_resized;cv::resize(img_src, img_resized, inputSize_);uint8_t* data_ptr = GetImage(img_resized);pretreat_data_->convert(data_ptr, inputSize_.width, inputSize_.height, 0, input_tensor_);mobilenetssd_interpreter_->runSession(mobilenetssd_sess_);std::string output_name = "detection_out";MNN::Tensor* output_tensor = mobilenetssd_interpreter_->getSessionOutput(mobilenetssd_sess_, output_name.c_str());// copy to hostMNN::Tensor output_host(output_tensor, output_tensor->getDimensionType());output_tensor->copyToHostTensor(&output_host);auto output_ptr = output_host.host<float>();for (int i = 0; i < output_host.height(); ++i) {int index = i * output_host.width();ObjectInfo object;object.name_ = class_names[int(output_ptr[index + 0])];object.score_ = output_ptr[index + 1];object.location_.x = output_ptr[index + 2] * width;object.location_.y = output_ptr[index + 3] * height;object.location_.width = output_ptr[index + 4] * width - object.location_.x;object.location_.height = output_ptr[index + 5] * height - object.location_.y;objects->push_back(object);}std::cout << "end detect." << std::endl;return 0;
}

具体代码已经上传到github:

https://github.com/MirrorYuChen/mnn_example/tree/master/src/object/mobilenetssd

觉得有用的点个star,不许白嫖哈~

参考资料:

[1] https://github.com/alibaba/MNN

[2] https://github.com/lqian/light-LPR

[3] https://blog.csdn.net/abcd740181246/article/details/90143848

这篇关于MNN学习笔记(五):caffe物体检测模型部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527760

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f