MNN框架学习(四):tensorflow图像分类模型部署

2023-12-23 10:48

本文主要是介绍MNN框架学习(四):tensorflow图像分类模型部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.模型转换

先下载tensorflow的模型,下载地址为:

https://github.com/tensorflow/models/tree/master/research/slim

然后,使用编译好的MNN工具转换模型:

./MNNConvert -f TF --modelFile mobilenet_v1_1.0_224_frozen.pb --MNNModel mobilenet.mnn --bizCode MNN

2、模型部署

主要分为两个步骤:

第一步,初始化步骤,包括读取模型创建解释器,配置调度参数、配置后端参数和创建会话

int Classifier::Init(const char* root_path) {std::cout << "start Init." << std::endl;std::string model_file = std::string(root_path) + "/mobilenet.mnn";// 创建解释器classifier_interpreter_ = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_file.c_str()));if (!classifier_interpreter_ || LoadLabels(root_path) != 0) {std::cout << "load model failed." << std::endl;return 10000;}    // 配置调度MNN::ScheduleConfig schedule_config;schedule_config.type = MNN_FORWARD_CPU;schedule_config.numThread = 1;// 配置后端MNN::BackendConfig backend_config;backend_config.precision = MNN::BackendConfig::Precision_Normal;schedule_config.backendConfig = &backend_config;// 创建会话classifier_sess_ = classifier_interpreter_->createSession(schedule_config);input_tensor_ = classifier_interpreter_->getSessionInput(classifier_sess_, nullptr);classifier_interpreter_->resizeTensor(input_tensor_, {1, 3, inputSize_.height, inputSize_.width});classifier_interpreter_->resizeSession(classifier_sess_);std::cout << "End Init." << std::endl; initialized_ = true;return 0;
}

第二步:数据读入、模型推理和后处理输出

int Classifier::Classify(const cv::Mat& img_src, std::vector<ImageInfo>* images) {std::cout << "start classify." << std::endl;images->clear();if (!initialized_) {std::cout << "model uninitialized." << std::endl;return 10000;}if (img_src.empty()) {std::cout << "input empty." << std::endl;return 10001;}cv::Mat img_resized;cv::resize(img_src.clone(), img_resized, inputSize_);std::shared_ptr<MNN::CV::ImageProcess> pretreat(MNN::CV::ImageProcess::create(MNN::CV::BGR, MNN::CV::RGB, meanVals, 3, normVals, 3));pretreat->convert((uint8_t*)img_resized.data, inputSize_.width, inputSize_.height, img_resized.step[0], input_tensor_);// forwardclassifier_interpreter_->runSession(classifier_sess_);// get output// mobilenet: "classifierV1/Predictions/Reshape_1"MNN::Tensor* output_score = classifier_interpreter_->getSessionOutput(classifier_sess_, nullptr);// copy to hostMNN::Tensor score_host(output_score, output_score->getDimensionType());output_score->copyToHostTensor(&score_host);auto score_ptr = score_host.host<float>();std::vector<std::pair<float, int>> scores;for (int i = 0; i < 1000; ++i) {float score = score_ptr[i];scores.push_back(std::make_pair(score, i));}std::partial_sort(scores.begin(), scores.begin() + topk_, scores.end(), std::greater< std::pair<float, int> >());for (int i = 0; i < topk_; ++i) {ImageInfo image_info;image_info.label_ = labels_[scores[i].second];image_info.score_ = scores[i].first;images->push_back(image_info);}std::cout << "end classify." << std::endl;return 0;
}

具体代码已经上传到github:https://github.com/MirrorYuChen/mnn_example/tree/master/src/classifier

大家觉得有用就给个star,不许白嫖哦~

参考资料:

[1] https://github.com/alibaba/MNN

[2] https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/MNN

 

这篇关于MNN框架学习(四):tensorflow图像分类模型部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527759

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2