0.618算法和基于Armijo准则的线搜索回退法

2023-12-23 10:20

本文主要是介绍0.618算法和基于Armijo准则的线搜索回退法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.618代码如下:

import math

# 定义函数h(t) = t^3 - 2t + 1

def h(t):

    return t**3 - 2*t + 1

# 0.618算法

def golden_section_search(a, b, epsilon): 

    ratio = 0.618 

    while (b - a) > epsilon: 

        x1 = b - ratio * (b - a) 

        x2 = a + ratio * (b - a) 

        h_x1 = h(x1) 

        h_x2 = h(x2) 

        if h_x1 < h_x2: 

            b = x2 

        else: 

            a = x1 

    return a  # 或者返回 b,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618算法找到的最小值:", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np 

  def h(t): 

    return t**3 - 2*t + 1 

  def h_derivative(t): 

    return 3*t**2 - 2 

  def armijo_line_search(t_current, direction, alpha, beta, c1): 

    t = t_current 

    step_size = 1.0 

    while True: 

        if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t): 

            return t + direction * step_size 

        else: 

            step_size *= beta 

        if np.abs(step_size) < 1e-6: 

            break 

    return None 

  def gradient_descent(start, end, alpha, beta, c1, epsilon): 

    t = start 

    while True: 

        if t > end: 

            break 

        direction = -h_derivative(t)  # 负梯度方向 

        next_t = armijo_line_search(t, direction, alpha, beta, c1) 

        if next_t is None or np.abs(h_derivative(next_t)) <= epsilon: 

            return next_t 

        t = next_t 

    return None 

  # 参数设置 

alpha = 0.1  # Armijo准则中的参数alpha 

beta = 0.5  # Armijo准则中的参数beta 

c1 = 1e-4  # 自定义参数,用于控制Armijo条件的满足程度 

epsilon = 1e-6  # 梯度范数的终止条件 

  # 搜索区间为[0,3] 

start = 0 

end = 3 

  # 执行梯度下降算法,求得近似最小值点 

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon) 

print("求得的最小值点为:", t_min) 

print("最小值点的函数值为:", h(t_min))

这篇关于0.618算法和基于Armijo准则的线搜索回退法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527681

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提