electron GPU process isn‘t usable. Goodbye

2023-12-23 04:52

本文主要是介绍electron GPU process isn‘t usable. Goodbye,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近再使用electron的时候总是报错打不开,记录一下这个问题的解决方法;

// 再主进程中添加下面的即可
app.commandLine.appendSwitch('no-sandbox');

官网看了下:https://www.electronjs.org/zh/docs/latest/api/command-line-switches
–no-sandbox
禁用 Chromium 沙箱。 强制渲染器进程和Chromium助手进程以非沙盒化运行。 应该只在测试时使用。

这篇关于electron GPU process isn‘t usable. Goodbye的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/526778

相关文章

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

如何用GPU算力卡P100玩黑神话悟空?

精力有限,只记录关键信息,希望未来能够有助于其他人。 文章目录 综述背景评估游戏性能需求显卡需求CPU和内存系统需求主机需求显式需求 实操硬件安装安装操作系统Win11安装驱动修改注册表选择程序使用什么GPU 安装黑神话悟空其他 综述 用P100 + PCIe Gen3.0 + Dell720服务器(32C64G),运行黑神话悟空画质中等流畅运行。 背景 假设有一张P100-

GPU 计算 CMPS224 2021 学习笔记 02

并行类型 (1)任务并行 (2)数据并行 CPU & GPU CPU和GPU拥有相互独立的内存空间,需要在两者之间相互传输数据。 (1)分配GPU内存 (2)将CPU上的数据复制到GPU上 (3)在GPU上对数据进行计算操作 (4)将计算结果从GPU复制到CPU上 (5)释放GPU内存 CUDA内存管理API (1)分配内存 cudaErro

Unity Post Process Unity后处理学习日志

Unity Post Process Unity后处理学习日志 在现代游戏开发中,后处理(Post Processing)技术已经成为提升游戏画面质量的关键工具。Unity的后处理栈(Post Processing Stack)是一个强大的插件,它允许开发者为游戏场景添加各种视觉效果,如景深、色彩校正、辉光、模糊等。这些效果不仅能够增强游戏的视觉吸引力,还能帮助传达特定的情感和氛围。 文档

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

麒麟系统安装GPU驱动

1.nvidia 1.1显卡驱动 本机显卡型号:nvidia rtx 3090 1.1.1下载驱动 打开 https://www.nvidia.cn/geforce/drivers/ 也可以直接使用下面这个地址下载 https://www.nvidia.com/download/driverResults.aspx/205464/en-us/ 1.1.3安装驱动 右击,

Kubernetes的alpha.kubernetes.io/nvidia-gpu无法限制GPU个数

问题描述: Pod.yaml文件中关于GPU资源的设置如下: 然而在docker中运行GPU程序时,发现宿主机上的两块GPU都在跑。甚至在yaml文件中删除关于GPU的请求,在docker中都可以运行GPU。 原因: 上例说明alpha.kubernetes.io/nvidia-gpu无效。查看yaml文件,发现该docker开启了特权模式(privileged:ture): 而