【每日一题】得到山形数组的最少删除次数

2023-12-23 04:04

本文主要是介绍【每日一题】得到山形数组的最少删除次数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Tag
  • 题目来源
  • 解题思路
    • 方法一:最长递增子序列
  • 写在最后

Tag

【最长递增子序列】【数组】【2023-12-22】


题目来源

1671. 得到山形数组的最少删除次数


解题思路

方法一:最长递增子序列

前后缀分解

根据前后缀思想,以 nums[i] 为山顶的山形数组可以看成 nums[i] 左侧以其作为结尾的最长递增子序列,我们记左侧的最长递增子序列的长度为 pre[i],拼接上 nums[i] 右侧以其作为结尾的最长递减子序列,我们记右侧的最长递减子序列的长度为 suf[i],此时以 nums[i] 为山顶的山形数组长度为:
p r e [ i ] + s u f [ i ] − 1 pre[i] + suf[i] - 1 pre[i]+suf[i]1
我们枚举所有的 nums[i],计算所有的最长山顶数组长度 maxLen,最后需要删除的数组元素长度为 n - maxLen 即为最后需要返回的答案。

最长递增子序列

如何计算 presuf

presuf 的计算过程类似。先来看一下 pre 的计算。维护数组 prepre[i] 表示以 nums[i] 作为结尾的最长递增子序列的长度;维护辅助数组 g,表示以当前元素 nums[i] 结尾的最长递增子序列数组。

遍历数组 nums,当前遍历的元素为 nums[i] 记为 x,在数组 g 中使用二分查找找到第一个大于 x 的元素,对应的位置为 it - g.begin() + 1

  • 更新 pre[i] = it - g.begin() + 1
  • 如果 x 不在 g 中,则将 x 加入 g;否则将 x 更新到 g 中相应的位置。

suf 的计算过程中,我们从后往前遍历数组 nums,就是找最长的递增子序列,于是计算过程和 pre 的计算类似。

remark1:因为山峰不可能在数组首和尾两个位置出现,那么在遍历所有山峰的范围 [0, n-1] 时,需要先做判断 pre[i] >= 2 && suf[i] >= 2

remark2:可以先计算 suf,然后一起计算 pre 和更新答案的,留给读者自己实现。

算法

class Solution {
public:int minimumMountainRemovals(vector<int>& nums) {int n = nums.size();vector<int> pre(n), g;for (int i = 0; i < n; ++i) {int x = nums[i];auto it = lower_bound(g.begin(), g.end(), x);pre[i] = it - g.begin() + 1;if (it == g.end()) {g.push_back(x);}else {*it = x;}}vector<int> suf(n);g.clear();for (int i = n - 1; i >= 0; --i) {int x = nums[i];auto it = lower_bound(g.begin(), g.end(), x);suf[i] = it - g.begin() + 1;if (it == g.end()) {g.push_back(x);}else {*it = x;}}int mx = 0;for (int i = 1; i < n - 1; ++i) {mx = max(mx, pre[i] + suf[i] - 1);}return n - mx;}
};

复杂度分析

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),更新 presuf 的时间复杂度都为 O(nlogn),更新答案的时间复杂度为 O ( n ) O(n) O(n)

空间复杂度: O ( n ) O(n) O(n),额外占用的空间为数组 presufg。空间复杂度: O ( n ) O(n) O(n),额外占用的空间为数组 presufg


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。

最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。

这篇关于【每日一题】得到山形数组的最少删除次数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526648

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

如何在Mac上彻底删除Edge账户? 手动卸载Edge浏览器并清理残留文件技巧

《如何在Mac上彻底删除Edge账户?手动卸载Edge浏览器并清理残留文件技巧》Mac上的Edge账户里存了不少网站密码和个人信息,结果同事一不小心打开了,简直尴尬到爆炸,想要卸载edge浏览器并清... 如果你遇到 Microsoft Edge 浏览器运行迟缓、频繁崩溃或网页加载异常等问题,可以尝试多种方

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir