【数据结构】算法的复杂度分析:让你拥有未卜先知的能力

2023-12-23 00:10

本文主要是介绍【数据结构】算法的复杂度分析:让你拥有未卜先知的能力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

  • 👑专栏内容:数据结构
  • ⛪个人主页:子夜的星的主页
  • 💕座右铭:日拱一卒,功不唐捐

文章目录

  • 一、前言
  • 二、时间复杂度
    • 1、定义
    • 2、大O的渐进表示法
    • 3、常见的时间复杂度
  • 三、空间复杂度
    • 1、定义
    • 2、常见的空间复杂度


一、前言

一个程序能用很多不同的算法来实现,那么到底那种算法是效率最高的呢?
对此我们有两种方法:

第一种是事后统计法,既在编写之后,通过计时,比较不同算法编写的程序的运行时间,以此确定算法效率的高低。但是该方法的缺陷很大,会受到测试环境、数据规模的影响。

第二种是事前分析法,即在编写之前,依据一些统计方法对算法进行粗略估算,大致的估算出该算法的时间复杂度和空间复杂度,通过对比复杂度来评判那种算法的效率更高。

在这里插入图片描述
可以说,学会了如何分析一个算法的复杂度,就拥有了未卜先知的能力,即在这个算法被写出来之前,就能大致评判出这个算法的好坏。

二、时间复杂度

1、定义

维基百科:在计算机科学中,算法的时间复杂度(time complexity)是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

在这里插入图片描述

额…具体来举个例子吧。

void Func1(int N)
{
int count = 0;
// n*n次
for (int i = 0; i < N ; ++ i)
{for (int j = 0; j < N ; ++ j){++count;}
}
// 2*n次
for (int k = 0; k < 2 * N ; ++ k)
{++count;
}
// 10次
int M = 10;
while (M--)
{++count;
}
printf("%d\n", count);
}

这个函数一共执行的基本操作次数为: F ( n ) = n 2 + 2 ∗ n + 10 F(n)=n^2+2*n+10 F(n)=n2+2n+10
但是,我们计算复杂度的时候,不一定需要计算这么精确的执行次数,我们只需要计算出大概的执行次数就行了,所以这里我们应该使用大O的渐进表示法。那么什么是大O表示法呢?

2、大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为(趋向于特定值或无穷大)的数学符号。

上面函数一共执行的操作次数为: F ( n ) = n 2 + 2 ∗ n + 10 F(n)=n^2+2*n+10 F(n)=n2+2n+10
学过极限的都知道,当 n n n趋向于无穷的时候, n 2 + 2 ∗ n + 10 n^2+2*n+10 n2+2n+10 中的 2 ∗ n 2*n 2n和10可以忽略不记。
所以用大O的渐进表示法,上面函数的时间复杂度应该为: O ( n 2 ) O(n^2) O(n2)
这里我们可以简单的总结一下方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、嵌套代码的复杂度等于嵌套内外代码复杂度的乘积。
4、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。

3、常见的时间复杂度

  • O ( 1 ) O(1) O(1)

一般情况下,要算法的执行时间不随问题规模 n 的增加而增大,那么就是 O ( 1 ) O(1) O(1)的时间复杂度

void Func(int n)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

以上代码看似存在循环,但是仔细看,当循环到第100次的时候,这个循环就停止了。
所以上面的时间复杂度为 O ( 1 ) O(1) O(1)

  • O ( l o g n ) O(logn) O(logn)

类似于二分查找、幂运算都是 O ( l o g n ) O(logn) O(logn)的时间复杂度

void Func(int n)
{int i=1;while (i <= n)  {i = i * 2;}
}

以上代码,变量 i 从 1 开始,每循环一次就乘以 2。当大于n时,循环结束。所以,假设一共循环了 x x x次,那么我们就可以得到: 2 x = n 2^x=n 2x=n x = l o g 2 n x=log_2n x=log2n ,忽略掉底数2,则该时间复杂度为: O ( l o g n ) O(logn) O(logn)

在这里插入图片描述

为什么可以忽略掉底数?
高中学过的换底公式: l o g b n = l o g b a ∗ l o g a n log_bn=log_ba*log_an logbn=logbalogan
现在假设底数不是2是3,我们可以把 l o g 3 n log_3n log3n写成 l o g 3 2 ∗ l o g 2 n log_32*log_2n log32log2n,根据前面的规矩:如果最高阶项存在且不是1,则去除与这个项目相乘的常数。 而这里的 l o g 3 2 log_32 log32是个常数,可以直接去除。所以兜兜转转,最后的时间复杂度还是 O ( l o g n ) O(logn) O(logn)

  • O ( n l o g n ) O(nlogn) O(nlogn)
void Func(int n)
{for (int i = 1; i <= n; i++){int j = 1;while (j <= n){j = j * 2;}}
}

根据上面可以知道,这个循环里面的循环的复杂度是 O ( l o g n ) O(logn) O(logn),而这个循环又要执行n次,所以算下来,它的时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)

  • O ( n ) O(n) O(n)
void Func(int n)
{for (int i = 1; i <= n; i++){printf("我一共执行了n次哦!");}
}
  • O ( n 2 ) O(n^2) O(n2)

循环套循环,每个循环都是n次

void Func(int n)
{for (int i = 1; i <= n; i++){for (int j = 1; j <= n; j++){printf("我一共执行了n*n次哦!");}}
}
  • O ( m ∗ n ) O(m*n) O(mn)
void Func(int n,int m)
{for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){printf("看的出来我有那些不一样吗?");}}
}

在这里插入图片描述
确实还有其他很多不同的时间复杂度,比如, O ( 2 n ) 、 O ( n ! ) O(2^n)、O(n!) O(2n)O(n!)…但是这些时间复杂度都太高了,以至于高到很多计算机都承受不了,所以比较少见。

在这里插入图片描述
在这里插入图片描述

三、空间复杂度

1、定义

维基百科:在计算机科学中,一个算法或程序的空间复杂度定性地描述该算法或程序运行所需要的存储空间大小。空间复杂度是相应计算问题的输入值的长度的函数,它表示一个算法完全执行所需要的存储空间大小。和时间复杂度类似,空间复杂度通常也使用大O记号来渐进地表示例如 O ( n ) 、 O ( n l o g n ) O(n)、O(nlogn) O(n)O(nlogn)其中n用来表示输入的长度,该值可以影响算法的空间复杂度。

就像时间复杂度的计算不考虑算法所使用的空间大小一样,空间复杂度也不考虑算法运行需要的时间长短。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

2、常见的空间复杂度

  • O ( 1 ) 型 O(1)型 O(1)

无论 n 的值如何变化,代码在执行过程中开辟的内存空间是固定的

void Func(int n)
{int i = 0; int sum = 0;for (i = 1; i < n; i++){sum = sum + i;}
}

这段代码之开辟了sum和i两个int类型的空间,大小是固定的。
所以这段代码的空间复杂度为 O ( 1 ) O(1) O(1)

  • O ( n ) 型 O(n)型 O(n)

随着n的值的增大,开辟的空间也逐渐增大

long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

这段代码递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。
所以这段代码的空间复杂度为 O ( N ) O(N) O(N)

  • O ( n 2 ) 型 O(n^2)型 O(n2)
  int** fun(int n) {int ** s = (int **)malloc(n * sizeof(int *));while(n--)s[n] = (int *)malloc(n * sizeof(int));return s;}

此处开辟的是一个二维数组,数组有n行,每行分别有1,2,3,…n列,所以是 n ( n + 1 ) / 2 n(n + 1)/2 n(n+1)/2个元素空间,空间复杂度为 n 2 n^2 n2

在这里插入图片描述

这篇关于【数据结构】算法的复杂度分析:让你拥有未卜先知的能力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525998

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原