【【迭代16次的CORDIC算法-verilog实现】】

2023-12-22 07:01

本文主要是介绍【【迭代16次的CORDIC算法-verilog实现】】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现

CORDIC.v

module cordic32#(parameter         DATA_WIDTH    =      8'd32  ,     // we set data widthparameter         PIPELINE      =      5'd16        // Optimize waveform)(input                              clk       ,input                              rst_n     ,input    signed    [DATA_WIDTH - 1 : 0]   phase     ,input                              ena       ,output  reg signed [DATA_WIDTH - 1  : 0]   sin_out   ,output  reg signed [DATA_WIDTH - 1  : 0]   cos_out);// -----------------------------------------------  \\//    next is define and parameter                  \\// ------------------------------------------------- \\
reg    signed     [DATA_WIDTH - 1 : 0]     phase_reg    ;reg    signed     [DATA_WIDTH - 1 : 0]     phase_reg1    ;reg    signed     [DATA_WIDTH - 1 : 0]     X0           ;reg    signed     [DATA_WIDTH - 1 : 0]     Y0           ;reg    signed     [DATA_WIDTH - 1 : 0]     Z0           ;wire   signed     [DATA_WIDTH - 1 : 0]     X1 , Y1 , Z1 ;wire   signed     [DATA_WIDTH - 1 : 0]     X2 , Y2 , Z2 ;wire   signed     [DATA_WIDTH - 1 : 0]     X3 , Y3 , Z3 ;wire   signed     [DATA_WIDTH - 1 : 0]     X4 , Y4 , Z4 ;wire   signed     [DATA_WIDTH - 1 : 0]     X5 , Y5 , Z5 ;wire   signed     [DATA_WIDTH - 1 : 0]     X6 , Y6 , Z6 ;wire   signed     [DATA_WIDTH - 1 : 0]     X7 , Y7 , Z7 ;wire   signed     [DATA_WIDTH - 1 : 0]     X8 , Y8 , Z8 ;wire   signed     [DATA_WIDTH - 1 : 0]     X9 , Y9 , Z9 ;wire   signed     [DATA_WIDTH - 1 : 0]     X10 , Y10 , Z10 ;wire   signed     [DATA_WIDTH - 1 : 0]     X11 , Y11 , Z11 ;wire   signed     [DATA_WIDTH - 1 : 0]     X12 , Y12 , Z12 ;wire   signed     [DATA_WIDTH - 1 : 0]     X13 , Y13 , Z13 ;wire   signed     [DATA_WIDTH - 1 : 0]     X14 , Y14 , Z14 ;wire   signed     [DATA_WIDTH - 1 : 0]     X15 , Y15 , Z15 ;wire   signed     [DATA_WIDTH - 1 : 0]     X16 , Y16 , Z16 ;reg    signed     [DATA_WIDTH - 1 : 0]     XN15 , YN15     ;reg [1:0] quadrant[PIPELINE : 0] ;integer i ;// We will convert all new angles to the first quadrant//always@(posedge clk or negedge rst_n)beginif( rst_n == 0 )beginphase_reg <= 0 ;phase_reg1 <= 0 ;endelse if( ena == 1)beginphase_reg1 <= phase ;case(phase[DATA_WIDTH - 1 : DATA_WIDTH - 2])2'b00 :phase_reg <= phase                 ;2'b01 :phase_reg <= phase - 32'h40000000  ;   // -902'b10 :phase_reg <= phase - 32'h80000000  ;   // -1802'b11 :phase_reg <= phase - 32'hC0000000  ;   // -270default :phase_reg <= 32'h00   ; endcaseendend// We begin the initialization operation// we set 0.607253*???2^31-1???,32'h4DBA775Falways@(posedge clk or negedge rst_n)beginif(rst_n == 0 )beginX0 <= 0 ;Y0 <= 0 ;Z0 <= 0 ;endelse if(ena == 1)beginX0 <= 32'h4DBA775F ;Y0 <= 0            ;Z0 <= phase_reg    ;endend// for instantiation - 16
INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd0 ),.ANGLE      ( 32'h20000000 )
)u_INTERATION0(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X0         ),.Y0         ( Y0         ),.Z0         ( Z0         ),.X1         ( X1         ),.Y1         ( Y1         ),.Z1         ( Z1         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd1 ),.ANGLE      ( 32'h12E4051D )
)u_INTERATION1(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X1         ),.Y0         ( Y1         ),.Z0         ( Z1         ),.X1         ( X2         ),.Y1         ( Y2         ),.Z1         ( Z2         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd2 ),.ANGLE      ( 32'h09FB385B )
)u_INTERATION2(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X2         ),.Y0         ( Y2         ),.Z0         ( Z2         ),.X1         ( X3         ),.Y1         ( Y3         ),.Z1         ( Z3         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd3 ),.ANGLE      ( 32'h051111D4 )
)u_INTERATION3(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X3         ),.Y0         ( Y3         ),.Z0         ( Z3         ),.X1         ( X4         ),.Y1         ( Y4         ),.Z1         ( Z4         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd4 ),.ANGLE      ( 32'h028B0D43 )
)u_INTERATION4(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X4         ),.Y0         ( Y4         ),.Z0         ( Z4         ),.X1         ( X5         ),.Y1         ( Y5         ),.Z1         ( Z5         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd5 ),.ANGLE      ( 32'h0145D7E1 )
)u_INTERATION5(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X5         ),.Y0         ( Y5         ),.Z0         ( Z5         ),.X1         ( X6         ),.Y1         ( Y6         ),.Z1         ( Z6         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd6 ),.ANGLE      ( 32'h00A2F61E )
)u_INTERATION6(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X6         ),.Y0         ( Y6         ),.Z0         ( Z6         ),.X1         ( X7         ),.Y1         ( Y7         ),.Z1         ( Z7         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd7 ),.ANGLE      ( 32'h00517C55 )
)u_INTERATION7(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X7         ),.Y0         ( Y7         ),.Z0         ( Z7         ),.X1         ( X8         ),.Y1         ( Y8         ),.Z1         ( Z8         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd8 ),.ANGLE      ( 32'h0028BE53 )
)u_INTERATION8(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X8         ),.Y0         ( Y8         ),.Z0         ( Z8         ),.X1         ( X9         ),.Y1         ( Y9         ),.Z1         ( Z9         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd9 ),.ANGLE      ( 32'h00145F2F )
)u_INTERATION9(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X9         ),.Y0         ( Y9         ),.Z0         ( Z9         ),.X1         ( X10         ),.Y1         ( Y10         ),.Z1         ( Z10         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd10 ),.ANGLE      ( 32'h000A2F98 )
)u_INTERATION10(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X10         ),.Y0         ( Y10         ),.Z0         ( Z10         ),.X1         ( X11         ),.Y1         ( Y11         ),.Z1         ( Z11         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd11 ),.ANGLE      ( 32'h000517CC )
)u_INTERATION11(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X11         ),.Y0         ( Y11         ),.Z0         ( Z11         ),.X1         ( X12         ),.Y1         ( Y12         ),.Z1         ( Z12         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd12 ),.ANGLE      ( 32'h00028BE6 )
)u_INTERATION12(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X12         ),.Y0         ( Y12         ),.Z0         ( Z12         ),.X1         ( X13         ),.Y1         ( Y13         ),.Z1         ( Z13         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd13 ),.ANGLE      ( 32'h000145F3 )
)u_INTERATION13(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X13         ),.Y0         ( Y13         ),.Z0         ( Z13         ),.X1         ( X14         ),.Y1         ( Y14         ),.Z1         ( Z14         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd14 ),.ANGLE      ( 32'h0000A2FA )
)u_INTERATION14(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X14         ),.Y0         ( Y14         ),.Z0         ( Z14         ),.X1         ( X15         ),.Y1         ( Y15         ),.Z1         ( Z15         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd15 ),.ANGLE      ( 32'h0000517D )
)u_INTERATION15(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X15         ),.Y0         ( Y15         ),.Z0         ( Z15         ),.X1         ( X16         ),.Y1         ( Y16         ),.Z1         ( Z16         )
);// iteration over always@(posedge clk or negedge rst_n)
beginif(rst_n == 0)for(i = 0 ; i < PIPELINE ; i=i+1)quadrant[i] <= 0 ;elseif(ena == 1)beginfor(i = 0 ; i < PIPELINE ; i=i+1)quadrant[i+1] <= quadrant[i] ;quadrant[0] <= phase_reg1[DATA_WIDTH - 1 : DATA_WIDTH - 2] ;end
end//------------------------------------------  \\//------------------------------------------  \\
//  Prevent overflow caused by small decimals and negative complement
//always @(posedge clk or negedge rst_n)if(rst_n == 0)XN15<=0;else if(X15[31:30] == 2'b11)//小于0XN15<=~X15 + 1'b1;else if(X15[31:30] == 2'b10)//大于1XN15<=32'h80000000 - X15 + 32'h80000000;else XN15 <= X15;always @(posedge clk or negedge rst_n )if(rst_n == 0)YN15 <=0;else if(Y15[31:30] == 2'b11)//小于0 YN15 <=~Y15 + 1'b1;else if(Y15[31:30] == 2'b10)//大于1YN15 <=32'h80000000 -Y15 + 32'h80000000;else YN15 <=Y15;// 
//   The results of different phases are also different//   phase[DATA_WIDTH -1 : DATA_WIDTH -2]//  00 first  quadrant//  01 second quadrant//  10 third  quadrant//  11 Fourth Quadrantalways@(posedge clk or negedge rst_n)
beginif(rst_n == 0)begincos_out <= 0 ;sin_out <= 0 ;endelse if( ena == 1)begincase(quadrant[16]) 2'b00 :begincos_out <= XN15 ;sin_out <= YN15 ;end2'b01 :begincos_out <= ~YN15 + 1'b1;sin_out <= XN15        ;end2'b10 :begincos_out <= ~XN15 + 1'b1  ;sin_out <= ~YN15 + 1'b1 ;end2'b11 :begincos_out <= YN15        ;sin_out <= ~XN15 + 1'b1 ;endendcaseend
end
endmodule

ITERATION.v

module INTERATION #(parameter   DATA_WIDTH       =    8'd32       ,parameter   shift            =    5'd0        ,parameter   ANGLE            =    32'h20000000)(input                                  clk     ,input                                  rst_n   ,input                                  ena     ,input       signed  [DATA_WIDTH - 1 : 0]      X0      ,input       signed  [DATA_WIDTH - 1 : 0]      Y0      ,input       signed  [DATA_WIDTH - 1 : 0]      Z0      ,output  reg signed  [DATA_WIDTH - 1 : 0]      X1      ,output  reg signed  [DATA_WIDTH - 1 : 0]      Y1      ,output  reg signed  [DATA_WIDTH - 1 : 0]      Z1);always@(posedge clk or negedge rst_n)beginif( rst_n == 0)beginX1 <= 0 ;Y1 <= 0 ;Z1 <= 0 ;endelse if( ena == 1)beginif(Z0[DATA_WIDTH - 1] == 0 )begin// X1 <= X0 - {{shift{ Y0[DATA_WIDTH - 1] }} ,Y0[DATA_WIDTH - 1 : shift] } ;// Y1 <= Y0 + {{shift{ X0[DATA_WIDTH - 1] }} ,X0[DATA_WIDTH - 1 : shift] } ;X1 <= X0 - (Y0>>>shift);Y1 <= Y0 + (X0>>>shift);Z1 <= Z0 - ANGLE                                                    ;endelse if(Z0[DATA_WIDTH - 1] == 1 )begin//X1 <= X0 + {{shift{ Y0[DATA_WIDTH - 1 ] }} ,Y0[DATA_WIDTH - 1 : shift] } ;// Y1 <= Y0 - {{shift{ X0[DATA_WIDTH - 1 ] }} ,X0[DATA_WIDTH - 1 : shift] } ;X1 <= X0 + (Y0>>>shift) ;Y1 <= Y0 - {X0>>>shift} ;Z1 <= Z0 + ANGLE                                                    ;endendendendmodule

CORDIC_tb.v

module cordic_tb #(parameter         DATA_WIDTH    =      8'd32  ,     // we set data widthparameter         PIPELINE      =      5'd16        // Optimize waveform    
);
reg                                 clk       ;
reg                                 rst_n     ;
reg          [DATA_WIDTH - 1 : 0]   phase     ;
reg                                 ena       ;
wire         [DATA_WIDTH - 1  : 0]   sin_out   ;
wire         [DATA_WIDTH - 1 : 0]   cos_out   ;integer i;
cordic32#(.DATA_WIDTH ( DATA_WIDTH ),.PIPELINE   ( PIPELINE )
)u_cordic32(.clk        ( clk        ),.rst_n      ( rst_n      ),.phase      ( phase      ),.ena        ( ena        ),.sin_out    ( sin_out    ),.cos_out    ( cos_out    )
);initial
begin#0 clk = 1'b0;ena   = 1'b1 ;#10 rst_n = 1'b0;#10 rst_n = 1'b1;#20000000 $stop;
end initial
beginrepeat(10)begin#0 phase = 32'd0;for(i=0;i<131072;i=i+1)begin#10;phase <= phase + 32'h8000;endend
end
always #10
beginclk = ~clk;
endendmodule 

README.md

在完成CORDIC的7次迭代之后 我在思考一个问题 8位进行了7次迭代 最后迭代至0号称没有误差了
我们是否可以通过 扩展至32位 进行多次迭代  将误差不断的缩小 本次数据参考至 网上的其他教程 我并没有自己去计算 我把结构优化一下 修改成更加便于理解使用的形式还有一件事 是 进制 与 Π 转化的问题 
对于 8位 其实我们 一开始将Π 设定为 1000_0000
那么对于 Π/4 是否就是1000_0000 的 四分之一 对于二进制 其实就是整体的数字进行移位 
我们将1000_0000 移动至 0010_0000 于此 而对于 32位我们32'h8000000 就是一个Π
而 32’h2000_0000 就是四分之Π 还有一件事 说明 我在写例化的时候 将数据完全完整的例化了下来 写的很长 这样并不是很好 
后面学习中 我看别人是 这么处理的 
genvar die;
generatefor (die = 0; die <Pipeline; die=die+1)begin: dieLoopalways @(posedge CLK_SYS or negedge RST_N)if (!RST_N) beginxn[die+1] <= 32'h0;yn[die+1] <= 32'h0;zn[die+1] <= 32'h0;endelse begin             if(zn[die][31]==1'b0)//角度符号判断beginxn[die+1] <= xn[die] - (yn[die]>>>die);yn[die+1] <= yn[die] + (xn[die]>>>die);zn[die+1] <= zn[die] - rot[die];  endelse beginxn[die+1] <= xn[die] + (yn[die]>>>die);yn[die+1] <= yn[die] - (xn[die]>>>die);zn[die+1] <= zn[die] + rot[die];  endendend
endgenerate# 还有一件事 对于溢出的考量 
我们所作溢出的考量 其实我们设定了32'h8000_0000 这既是Π的值 也是 1的设定 
但是在实际的运用和计算中 我们其实永远也达不到1 嘿嘿 
因为我们把最高位设计成了 符号位 
那么最大 也就是1 我们约等于 32'h7fff_ffff
这里需要注意的是[31:28] 是 7 也就是0111 非常重要的一个结论 我们最高位0代表了符号位
那么对于设计到第一象限的[31:30] 的值可以取 00 01 但是 10 11我们要对其进行合适的转化
所以便有了我们  对溢出的操作 always @(posedge clk or negedge rst_n)if(rst_n == 0)XN15<=0;else if(X15[31:30] == 2'b11)//小于0XN15<=~X15 + 1'b1;else if(X15[31:30] == 2'b10)//大于1XN15<=32'h80000000 - X15 + 32'h80000000;else XN15 <= X15;always @(posedge clk or negedge rst_n )if(rst_n == 0)YN15 <=0;else if(Y15[31:30] == 2'b11)//小于0 YN15 <=~Y15 + 1'b1;else if(Y15[31:30] == 2'b10)//大于1YN15 <=32'h80000000 -Y15 + 32'h80000000;else YN15 <=Y15;注意在设计的时候 定义成reg signed 的形式 将其设计为有符号位 

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

这篇关于【【迭代16次的CORDIC算法-verilog实现】】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522996

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja