在国产GPU寒武纪MLU上快速上手Pytorch使用指南

2023-12-21 12:44

本文主要是介绍在国产GPU寒武纪MLU上快速上手Pytorch使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文旨在帮助Pytorch使用者快速上手使用寒武纪MLU。以代码块为主,文字尽可能简洁,许多部分对标NVIDIA CUDA。不正确的地方请留言更正。本文不定期更新。

文章目录

  • 前言
  • Cambricon PyTorch的Python包torch_mlu导入
  • 将模型加载到MLU上model.to('mlu')
  • 定义损失函数,然后将其拷贝至MLU
  • 将数据从CPU拷贝到MLU设备
  • 以mnist.py为例的训练代码demo
  • 参考引用


前言

大背景:信创改造、信创国产化、GPU国产化。

为使PyTorch支持寒武纪MLU,寒武纪对机器学习框架PyTorch进行了部分定制。若要在寒武纪MLU上运行PyTorch,需要安装并使用寒武纪定制的 Cambricon PyTorch


Cambricon PyTorch的Python包torch_mlu导入

Cambricon CATCH是寒武纪发布的一款Python包(包名torch_mlu),提供了在MLU设备上进行张量计算的能力。安装好Cambricon CATCH后,便可使用torch_mlu模块:

import torch # 需安装Cambricon PyTorch
import torch_mlu # 动态扩展MLU后端

附 Cambricon PyTorch源码编译安装

导入 torch 和 torch_mlu 后可以测试在MLU上完成加法运算:

t0 = torch.randn(2, 2, device='mlu') # 在MLU设备上生成Tensor
t1 = torch.randn(2, 2, device='mlu')
result = t0 + t1 # 在MLU设备上完成加法运算

将模型加载到MLU上model.to(‘mlu’)

以ResNet18为例,将模型加载到MLU上用 model.to('mlu'),对标cuda的 model.to(device)

# 定义模型
model = models.__dict__["resnet50"]()
# 将模型加载到MLU上。
mlu_model = model.to('mlu')

定义损失函数,然后将其拷贝至MLU

# 构造损失函数
criterion = nn.CrossEntropyLoss()
# 将损失函数拷贝到MLU上
criterion.to('mlu')

将数据从CPU拷贝到MLU设备

x = torch.randn(1000000, dtype=torch.float)
x_mlu = x.to(torch.device('mlu'), non_blocking=True)

以mnist.py为例的训练代码demo

import torch # 导入原生 PyTorch
import torch_mlu # 导入 Cambricon PyTorch
from torch.utils.data import DataLoader
from torchvision.datasets import mnist
from torch import nn
from torch import optim
from torchvision import transforms
from torch.optim.lr_scheduler import StepLR
import torch.nn.functional as F# 定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.dropout1 = nn.Dropout2d(0.25)self.dropout2 = nn.Dropout2d(0.5)self.fc1 = nn.Linear(9216, 128)self.fc2 = nn.Linear(128, 10)# 定义前向计算def forward(self, x):x = self.conv1(x)x = F.relu(x)x = self.conv2(x)x = F.relu(x)x = F.max_pool2d(x, 2)x = self.dropout1(x)x = torch.flatten(x, 1)x = self.fc1(x)x = F.relu(x)x = self.dropout2(x)x = self.fc2(x)output = F.log_softmax(x, dim=1)return output# 模型训练
def train(model, train_data, optimizer, epoch):model = model.train()for batch_idx, (img, label) in enumerate(train_data):img = img.mlu()label = label.mlu()optimizer.zero_grad()out = model(img)loss = F.nll_loss(out, label)# 反向计算loss.backward()# 梯度更新optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(img), len(train_data.dataset),100. * batch_idx / len(train_data), loss.item()))# 模型推理
def validate(val_loader, model):test_loss = 0correct = 0model.eval()with torch.no_grad():for images, target in val_loader:images = images.mlu()target = target.mlu()output = model(images)test_loss += F.nll_loss(output, target, reduction='sum').item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(val_loader.dataset)# 打印精度结果print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(val_loader.dataset),100. * correct / len(val_loader.dataset)))# 主函数
def main():# 定义预处理函数data_tf = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.1307],[0.3081])])# 获取 MNIST 数据集train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True)test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)train_data = DataLoader(train_set, batch_size=64, shuffle=True)test_data = DataLoader(test_set, batch_size=1000, shuffle=False)net_orig = Net()# 模型拷贝到MLU设备net = net_orig.mlu()optimizer = optim.Adadelta(net.parameters(), 1)# 训练10个epochnums_epoch = 10# 训练完成后保存模型save_model = True# 学习率调整策略scheduler = StepLR(optimizer, step_size=1, gamma=0.7)for epoch in range(nums_epoch):train(net, train_data, optimizer, epoch)validate(test_data, net)scheduler.step()if save_model:  # 将训练好的模型保存为model.pthif epoch == nums_epoch-1:checkpoint = {"state_dict":net.state_dict(), "optimizer":optimizer.state_dict(), "epoch": epoch}torch.save(checkpoint, 'model.pth')if __name__ == '__main__':main()

参考引用

寒武纪PyTorch v1.13.1用户手册

这篇关于在国产GPU寒武纪MLU上快速上手Pytorch使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/520049

相关文章

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

Python pickle模块的使用指南

《Pythonpickle模块的使用指南》Pythonpickle模块用于对象序列化与反序列化,支持dump/load方法及自定义类,需注意安全风险,建议在受控环境中使用,适用于模型持久化、缓存及跨... 目录python pickle 模块详解基本序列化与反序列化直接序列化为字节流自定义对象的序列化安全注

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Linux grep 命令的使用指南

《Linuxgrep命令的使用指南》本文给大家介绍Linuxgrep命令的使用指南,包括基础搜索语法、实践指南,感兴趣的朋友跟随小编一起看看吧... 目录linux grep 命令全面使用指南一、基础搜索语法1. 基本文本搜索2. 多文件搜索二、常用选项详解1. 输出控制选项2. 上下文控制选项三、正则表达

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

Spring Security6.3.x的使用指南与注意事项

《SpringSecurity6.3.x的使用指南与注意事项》SpringSecurity6.3.1基于现代化架构,提供简洁配置、增强默认安全性和OAuth2.1/OIDC支持,采用Lambda... 目录介绍基础配置 (Servlet 应用 - 使用 Lambda DSL)关键配置详解(Lambda DS

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre