【【迭代七次的CORDIC算法-Verilog实现】】

2023-12-21 09:28

本文主要是介绍【【迭代七次的CORDIC算法-Verilog实现】】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迭代七次的CORDIC算法-Verilog实现求解正弦余弦函数

COEDIC.v

module CORDIC #(parameter         DATA_WIDTH    =      4'd8  ,     // we set data widthparameter         PIPELINE      =      4'd8)(input                              clk       ,input                              rst_n     ,input       [DATA_WIDTH - 1 : 0]   phase     ,input                              ena       ,output  reg [DATA_WIDTH - 1 : 0]   sin_out   ,output  reg [DATA_WIDTH - 1 : 0]   cos_out);//  ------------------------------------------------  \\//         next is define and parameter               \\//  -------------------------------------------------\\
reg      [DATA_WIDTH - 1 : 0]    phase_reg     ;reg      [DATA_WIDTH - 1 : 0]    X0            ;reg      [DATA_WIDTH - 1 : 0]    Y0            ;reg      [DATA_WIDTH - 1 : 0]    Z0            ;wire     [DATA_WIDTH - 1 : 0]    X1 , Y1 , Z1  ;wire     [DATA_WIDTH - 1 : 0]    X2 , Y2 , Z2  ;wire     [DATA_WIDTH - 1 : 0]    X3 , Y3 , Z3  ;wire     [DATA_WIDTH - 1 : 0]    X4 , Y4 , Z4  ;wire     [DATA_WIDTH - 1 : 0]    X5 , Y5 , Z5  ;wire     [DATA_WIDTH - 1 : 0]    X6 , Y6 , Z6  ;wire     [DATA_WIDTH - 1 : 0]    X7 , Y7 , Z7  ;reg [1:0] quadrant[PIPELINE : 0] ;integer i ;always@(posedge clk or negedge rst_n)beginif(rst_n == 0)for(i = 0 ; i <= PIPELINE ; i=i+1)quadrant[i] <= 0 ;elseif(ena == 1)beginfor(i = 0 ; i <= PIPELINE ; i=i+1)quadrant[i+1] <= quadrant[i] ;quadrant[0] <= phase[DATA_WIDTH - 1 : DATA_WIDTH - 2] ;endend//  we set a new phase to Unify the phase in the first quadrant//  we set 8'h      0010 0000 =>  45度     and  1000 0000 => 180度always@(posedge clk or negedge rst_n)beginif(rst_n == 0)beginphase_reg <= 0 ;endelse if(ena == 1)begincase(phase[DATA_WIDTH -1 : DATA_WIDTH -2])2'b00 :phase_reg <= phase          ;2'b01 :phase_reg <= phase - 8'h40  ; // subtract 902'b10 :phase_reg <= phase - 8'h80  ; // subtract 1802'b11 :phase_reg <= phase - 8'hC0  ; // subtract 270default :;endcaseendend//  start to calculate// we should set x0= 0.607252935    y0= 0  z0always@(posedge clk or negedge rst_n )beginif( rst_n == 0)beginX0 <= 0     ;Y0 <= 0     ;Z0 <= 0     ;endelse if(ena == 1 )beginX0 <= 8'h4D      ;Y0 <= 0          ;Z0 <= phase_reg  ;endend// next is iterationINTERATION#(.DATA_WIDTH ( 4'd8 ),.shift      ( 4'd0 ),.ANGLE      ( 8'h20 ))u_INTERATION0(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X0         ),.Y0         ( Y0         ),.Z0         ( Z0         ),.X1         ( X1         ),.Y1         ( Y1         ),.Z1         ( Z1         ));INTERATION#(.DATA_WIDTH ( 4'd8 ),.shift      ( 4'd1 ),.ANGLE      ( 8'h12 ))u_INTERATION1(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X1         ),.Y0         ( Y1         ),.Z0         ( Z1         ),.X1         ( X2         ),.Y1         ( Y2         ),.Z1         ( Z2         ));INTERATION#(.DATA_WIDTH ( 4'd8 ),.shift      ( 4'd2 ),.ANGLE      ( 8'h09 ))u_INTERATION2(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X2         ),.Y0         ( Y2         ),.Z0         ( Z2         ),.X1         ( X3         ),.Y1         ( Y3         ),.Z1         ( Z3         ));INTERATION#(.DATA_WIDTH ( 4'd8 ),.shift      ( 4'd3 ),.ANGLE      ( 8'h04 ))u_INTERATION3(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X3         ),.Y0         ( Y3         ),.Z0         ( Z3         ),.X1         ( X4         ),.Y1         ( Y4         ),.Z1         ( Z4         ));INTERATION#(.DATA_WIDTH ( 4'd8 ),.shift      ( 4'd4 ),.ANGLE      ( 8'h02 ))u_INTERATION4(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X4         ),.Y0         ( Y4         ),.Z0         ( Z4         ),.X1         ( X5         ),.Y1         ( Y5         ),.Z1         ( Z5         ));INTERATION#(.DATA_WIDTH ( 4'd8 ),.shift      ( 4'd5 ),.ANGLE      ( 8'h01 ))u_INTERATION5(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X5         ),.Y0         ( Y5         ),.Z0         ( Z5         ),.X1         ( X6         ),.Y1         ( Y6         ),.Z1         ( Z6         ));INTERATION#(.DATA_WIDTH ( 4'd8 ),.shift      ( 4'd6 ),.ANGLE      ( 8'h00 ))u_INTERATION6(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X6         ),.Y0         ( Y6         ),.Z0         ( Z6         ),.X1         ( X7         ),.Y1         ( Y7         ),.Z1         ( Z7         ));//   The results of different phases are also different//   phase[DATA_WIDTH -1 : DATA_WIDTH -2]//  00 first  quadrant//  01 second quadrant//  10 third  quadrant//  11 Fourth Quadrantalways@(posedge clk or negedge rst_n)beginif(rst_n == 0)begincos_out <= 0 ;sin_out <= 0 ;endelse if( ena == 1)begincase(quadrant[7])2'b00 :begincos_out <= X6 ;sin_out <= Y6 ;end2'b01 :begincos_out <= ~(Y6) + 1 ;sin_out <= X6        ;end2'b10 :begincos_out <= ~(X6) + 1 ;sin_out <= ~(Y6) + 1 ;end2'b11 :begincos_out <= Y6        ;sin_out <= ~(X6) + 1 ;enddefault:;endcaseendend
endmodule

Interation.v

module INTERATION #(parameter   DATA_WIDTH       =    4'd8      ,parameter   shift            =    4'd0      ,parameter   ANGLE            =    8'h20)(input                                  clk     ,input                                  rst_n   ,input                                  ena     ,input        [DATA_WIDTH - 1 : 0]      X0      ,input        [DATA_WIDTH - 1 : 0]      Y0      ,input        [DATA_WIDTH - 1 : 0]      Z0      ,output  reg  [DATA_WIDTH - 1 : 0]      X1      ,output  reg  [DATA_WIDTH - 1 : 0]      Y1      ,output  reg  [DATA_WIDTH - 1 : 0]      Z1);always@(posedge clk or negedge rst_n)beginif( rst_n == 0)beginX1 <= 0 ;Y1 <= 0 ;Z1 <= 0 ;endelse if( ena == 1)beginif(Z0[DATA_WIDTH - 1] == 0 )beginX1 <= X0 - {{shift{ Y0[DATA_WIDTH - 1] }} ,Y0[DATA_WIDTH - 1 : shift] } ;Y1 <= Y0 + {{shift{ X0[DATA_WIDTH - 1] }} ,X0[DATA_WIDTH - 1 : shift] } ;Z1 <= Z0 - ANGLE                                                    ;endelse if(Z0[DATA_WIDTH - 1] == 1 )beginX1 <= X0 + {{shift{ Y0[DATA_WIDTH - 1 ] }} ,Y0[DATA_WIDTH - 1 : shift] } ;Y1 <= Y0 - {{shift{ X0[DATA_WIDTH - 1 ] }} ,X0[DATA_WIDTH - 1 : shift] } ;Z1 <= Z0 + ANGLE                                                    ;endendendendmodule

cordic_tb.v

module cordic_tb #(parameter       DATA_WIDTH   =    4'd8      
);
reg                                 clk       ;
reg                                 rst_n     ;
reg          [DATA_WIDTH - 1 : 0]   phase     ;
reg                                 ena       ;
wire         [DATA_WIDTH - 1 : 0]   sin_out   ;
wire         [DATA_WIDTH - 1 : 0]   cos_out   ;CORDIC#(.DATA_WIDTH    ( DATA_WIDTH )
)u_CORDIC(.clk           ( clk           ),.rst_n         ( rst_n         ),.phase         ( phase         ),.ena           ( ena           ),.sin_out       ( sin_out       ),.cos_out       ( cos_out       )
);always #5 clk = ~clk ;initial 
begin clk      = 0     ;rst_n    = 0     ; ena      = 1     ;phase    = 8'h00 ;#10rst_n   = 1      ;
end
always #10
phase = phase + 1    ; endmodule 

README.md

# 本文参考自 西电的verilog 课程实验 还有网上的 CORDIC算法详解
对于CORDIC的算法 关键是学会迭代和 掌握自 不同象限角度的换算
我在参阅网上资料的时候 发现有些角度的换算存在了错误这里我再写入一下 
| 第一象限 | 第二象限 | 第三象限 | 第四象限 |
| --------| --------| --------| --------|
| (x,y)   | (x,y)   | (x,y)    |  (x,y)   |
| (x,y)   | (-y,x)  | (-x ,-y) | (y , -x) |最关键的是在于理清如何计算的 实际操作起来的  圆周旋转求旋转模式下的正余弦
并不用考虑太多的 角度旋转 选取初始值之后 直接迭代开干 

在这里插入图片描述

## 波形很奇怪 我也不懂为什么做不到像其他人的这么顺滑 但是应该没错吧

纠正一下 把进制改成 Signed Decimal 就可以得到顺滑的常规正弦函数波形
在这里插入图片描述

这篇关于【【迭代七次的CORDIC算法-Verilog实现】】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519442

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja