2017年第六届数学建模国际赛小美赛A题飓风与全球变暖解题全过程文档及程序

本文主要是介绍2017年第六届数学建模国际赛小美赛A题飓风与全球变暖解题全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2017年第六届数学建模国际赛小美赛

A题 飓风与全球变暖

原题再现:

  飓风(也包括在西北太平洋被称为“台风”的风暴以及在印度洋和西南太平洋被称为“严重热带气旋”)具有极大的破坏性,往往造成数百人甚至数千人死亡。
  许多气象学家一致认为,在过去的几十年里,全球变暖(大约半摄氏度)已经发生在地球表面,而且这种趋势可能会继续下去。问题是,全球变暖对飓风活动意味着什么?请构造一个合理的模型,测量全球变暖的程度和全球飓风活动的强度,并估计两者之间的关系。

整体求解过程概述(摘要)

  全球变暖被认为是影响飓风强度的重要因素之一。全球变暖对飓风影响的研究已经展开,但尚未得出确切的结论。
  本文通过建立模型来衡量全球变暖的程度和飓风的强度,并得出它们之间的关系。
  在模型1中,建立了反映全球变暖程度的评价指标体系。采用熵权法计算各变量的权重。然后类比动量方程,建立一个综合指标来表征全球变暖的程度。
  在模式2中,我们对海温如何影响单个飓风进行了微观分析。建立运动方程,分析速度梯度和温度梯度之间的关系。然后应用回归分析方法,求出海温、强度、速度、加速度、压力、运动方向之间的相关关系。通过聚类分析将模型推广到一般情况。结果表明,海温直接影响飓风的运动路径,改变加速度的方向和值。海温对飓风的压力和速度也有影响。在此基础上,进一步得出温度与飓风频率密度分布关系不大的结论。
  在模式3中,分别分析了不同地区的飓风强度特征,计算出全球变暖程度的相关性。结果表明,飓风强度与全球蠕虫的关系因地区而异。尤其在东太平洋地区,飓风强度与全球变暖呈负相关。这可以用厄尔尼诺现象来解释。
  在模型4中,我们定义了一个基于总能量耗散的飓风潜在破坏性(PDI)指数来表示飓风的强度,然后进行回归以确定与全球变暖的关系。结果表明,PDI与热带海表温度相关,反映了已有的气候信号,但与飓风频率的关系更为显著。
  在模型5中,我们建立了预测模型,并对PDI和GWD的趋势进行了预测,结果表明全球GWD面临急剧增长,而PDI仍将处于波动之中。最后给出了未来PDI和GWD的可能值。
  最后,分析了本文提出的方法的优缺点。该研究在现实世界中也具有一定的应用价值。

模型假设:

  (1) 数据来源真实可靠
  (2) 全球变暖的程度主要体现在海平面、冰山数量和高度、海表温度、全球温度等方面。
  (3) 全球变暖的程度主要受人口、温室气体排放、森林覆盖率等因素的影响。
  (4) 飓风强度的大小主要受强度等级、飓风频次、各等级飓风频次的影响。

问题分析:

  现将问题分为以下具体分析,根据要求可分为两个子部分:
  建立模型,了解全球变暖对飓风活动的影响。
  构建一个合理的模型,测量全球变暖的程度和全球飓风活动的强度,并估计两者之间的关系。
  解决问题可分为3个步骤:
  分别分析了飓风的运动特征,得出了温度变化对飓风的影响。
  分析全球变暖与不同地区飓风强度的关系。比较得出结论。
  分析全球变暖对全球飓风强度的影响。
  为了解决每个环节的问题,我们建立了综合评价指标体系,定义了三个体系的层次:
  全球变暖影响全球变暖的因素,这些因素表达了飓风强度的程度。每个索引包含不同的对应变量。通过分析各指标之间的关系,可以得出全球变暖对飓风强度的影响。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

D=[];
D0=DC;
D1=D0(1:,6);
D2=D0(1:,7);
D3=D0(1:,8);
D4=D0(1:,9);
e1=mean(D1);
e2=mean(D2);
e3=mean(D3);
e4=mean(D4);
d1=std(D1);
d2=std(D2);
d3=std(D3);
d4=std(D4);
for i=1:6349if abs(D1(i)
-e1)>3*d1D0(i,:)=
-1;endif abs(D2(i)
-e2)>3*d1D0(i,:)=
-1;endif abs(D3(i)
-e3)>3*d1D0(i,:)=
-1;endif abs(D4(i)
-e4)>3*d1D0(i,:)=
-1;end
end
for i=1:6349if D0(i,1)~=
-
1D=[D;D0(i,:)];end
end
clc,clear
gmr=xlsread('data'
,'V2:X30'); 
ppl=gmr(:,1); 
carb=gmr(:,2); 
forest=gmr(:,3); 
sst=xlsread('data'
,'I2:I30'); 
ssh=xlsread('data'
,'Q2:Q30'); 
ice=xlsread('data'
,'N2:N30') ; 
sst_entropy=xlsread('data'
,'J2:J30'); 
gmf=[sst ssh ice sst_entropy]; 
temp=xlsread('data'
,'B2:B30');
gmr_min=min(gmr);
gmr_max=max(gmr);
gmf_min=min(gmf);
gmf_max=max(gmf);
for i=1:length(gmr);for j=1:3if j==3
gmr_nor(i,j)=(gmr_max(j)-gmr(i,j))/(gmr_max(j)-gmr_min(j));elsegmr_nor(i,j)=(gmr(i,j)-gmr_min(j))/(gmr_max(j)-gmr_min(j));endend
end
for i=1:length(gmf)for j=1:4if j==3gmf_nor(i,j)=(gmf_max(j)-gmf(i,j))/(gmf_max(j)-gmf_min(j));elsegmf_nor(i,j)=(gmf(i,j)-gmf_min(j))/(gmf_max(j)-gmf_min(j));endend
end
EWr=EntropyWeight(gmr_nor);
EWf=EntropyWeight(gmf_nor);
alpha=gmr_nor*EWr';
beta=gmf_nor*EWf';
GWD=0.5*alpha.*alpha.*beta;
figure 
t=1980:2008;
plot(t,beta,'k',t,alpha,'r')
xlabel('year')
hold on
[ax,h1,h2]=plotyy(t,GWD,t,temp)
set(ax(2),'ytick',[14:0.1:14.7]) 
set(ax(1),'ytick',[0:0.1:1])
set(h1,'color','m');
set(h2,'color','b');
legend('The Present Index of Global Warming','The Motivation of Global Warming','The Extent
of Global Warming','Global Average Temperature')
%xlabel('year'), ylabel('global average temperature '),title('Global Average Temperature')
%figure 
%t=1980:2008;
%plot(t,beta,'k')
%xlabel('year'), ylabel('the present index of global warming beta'),title('The Present Index of 
Global Warming')
%figure
%plot(t,alpha,'r')
%xlabel('year'), ylabel('the motivation of global warming alpha'),title('The Motivation of Global 
Warming')
%figure
%plot(t,GWD)
%xlabel('year'), ylabel('GWD'),title('The Extent of Global Warming')
%figure
%plot(t,temp,'m')
%xlabel('year'), ylabel('global average temperature '),title('Global Average Temperature')
function weights = EntropyWeight(R)
[rows,cols]=size(R); 
k=1/log(rows); 
f=zeros(rows,cols); 
sumBycols=sum(R,1); 
for i=1:rowsfor j=1:colsf(i,j)=R(i,j)./sumBycols(1,j);end
end
lnfij=zeros(rows,cols); 
for i=1:rowsfor j=1:colsif f(i,j)==0lnfij(i,j)=0;elselnfij(i,j)=log(f(i,j));endend
end
Hj=-k*(sum(f.*lnfij,1)); 
weights=(1-Hj)/(cols-sum(Hj));
end
clc
clear
I=xlsread('飓风数据.xlsx','Sheet1','I2:T61');
yyy=xlsread('飓风数据.xlsx','Sheet1','A2:A61');
E=zeros(60,1);
for ii=1:60E(ii)=entropy(I(ii,:));
end
clc
clear
I=xlsread(' 飓风数据.xlsx','I2:T61');
yyy=xlsread('飓风数据.xlsx','Sheet1','A2:A61');
E=zeros(60,1);
for ii=1:60E(ii)=entropy(I(ii,:));
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2017年第六届数学建模国际赛小美赛A题飓风与全球变暖解题全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518946

相关文章

maven私服配置全过程

《maven私服配置全过程》:本文主要介绍maven私服配置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用Nexus作为 公司maven私服maven 私服setttings配置maven项目 pom配置测试效果总结使用Nexus作为 公司maven私

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Ubuntu设置程序开机自启动的操作步骤

《Ubuntu设置程序开机自启动的操作步骤》在部署程序到边缘端时,我们总希望可以通电即启动我们写好的程序,本篇博客用以记录如何在ubuntu开机执行某条命令或者某个可执行程序,需要的朋友可以参考下... 目录1、概述2、图形界面设置3、设置为Systemd服务1、概述测试环境:Ubuntu22.04 带图

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Python程序打包exe,单文件和多文件方式

《Python程序打包exe,单文件和多文件方式》:本文主要介绍Python程序打包exe,单文件和多文件方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python 脚本打成exe文件安装Pyinstaller准备一个ico图标打包方式一(适用于文件较少的程

Linux下安装Anaconda3全过程

《Linux下安装Anaconda3全过程》:本文主要介绍Linux下安装Anaconda3全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录简介环境下载安装一、找到下载好的文件名为Anaconda3-2018.12-linux-x86_64的安装包二、或者通

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

Python程序的文件头部声明小结

《Python程序的文件头部声明小结》在Python文件的顶部声明编码通常是必须的,尤其是在处理非ASCII字符时,下面就来介绍一下两种头部文件声明,具有一定的参考价值,感兴趣的可以了解一下... 目录一、# coding=utf-8二、#!/usr/bin/env python三、运行Python程序四、