导入python自带的一系列数据集等操作

2023-12-20 06:48

本文主要是介绍导入python自带的一系列数据集等操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#通过matplotlib实现数据的可视化
#sklearn库自带数据集,加载的方式是固定的,站在巨人的肩膀上
'''
#导入数据集
from sklearn.datasets import load_iris
from sklearn.datasets import load_boston#导入matplotlib绘图模块
from matplotlib import pyplot as plt
#%matplotlib inline#我也不知道这是啥意思iris=load_iris()
print(iris.DESCR)
data=iris.data
plt.plot(data[:,0],data[:,1],'.')boston=load_boston()
print(boston.DESCR)
data=boston.data
plt.plot(data[:,2],data[:,4],'+')iris=load_iris()''''''
#import pandas as pd
#import numpy as np#df=pd.read_csv('WHO_first9cols.csv')
#print(df)# pandas数据结构之dataframe
from pandas.io.parsers import read_csvdf=read_csv('WHO_first9cols.csv')
print('dataframe',df)
#pandas属性:以元组形式存放dataframe的形状数据
print('shape',df.shape)
print('length',len(df))#考察各列的标题与数据类型
print('column headers',df.columns)#标题
print('data types',df.dtypes)#数据类型#pandas的dataframe带有一个索引,类似于关系型数据库的主键(primary key)
#方法:print('Index',df.index)
print('Index',df.index)#遍历dataframe的基础数据,pandas的迭代器,遍历列值的效率会很低
#更好的解决方案:从基础的numpy数组中提取这些数值,进行相应处理
print('Values',df.values)#非数字的数值被标为’nan‘
'''#pandas数据结构之Series
#series数据结构是不同类型元素组成的一维数组,该数据结构也具有标签
#创建Series数据结构:
#1.使用python字典
#2.使用numpy数组
#3.使用单个标量值import pandas as pd
import numpy as np'''
df=pd.read_csv('WHO_first9cols.csv')
country_col=df['Country']#选中文件中的第一列,即Country列
print('type country_col',type(country_col))#得到一个series型的数据
print('Series shape',country_col.shape)
print('Series index',country_col.index)
print('Series values',country_col.values)
print('Series name',country_col.name)#可以看到每一个元素叫什么#Series的切片功能,取Country中的最后两个国家
print('Last 2 countries',country_col[-2:])
print('Last 2 countries type',type(country_col[-2:]))#numpy的函数适用pandas的DataFrame和Series数据结构
#可以使用NumPy的sign()函数获得数字的符号
#正数返回1,负数返回-1,零值返回0last_col=df.columns[-1]#最后一列
print('Last df column signs:\n',last_col,np.sign(df[last_col]),'\n')
''''''
#小例子说明涉及nan的运算会产生nan
a=np.sum([0,np.nan])
print(np.sum(df[last_col]-df[last_col].values))#利用pandas查询数据
#pandas的dataframe结构类似于关系型数据库,从dataframe读写数据可以看作是一种查询操作
'''

这篇关于导入python自带的一系列数据集等操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515096

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达