t-SNE高维数据可视化实例

2023-12-19 23:01

本文主要是介绍t-SNE高维数据可视化实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

t-SNE:高维数据分布可视化

实例1:自动生成一个S形状的三维曲线

实例1结果

实例1完整代码

import matplotlib.pyplot as plt
from sklearn import manifold, datasets
"""对S型曲线数据的降维和可视化"""x, color = datasets.make_s_curve(n_samples=1000, random_state=0)		# 生成一个S形状的三维曲线,以及相应的颜色数据,数据点的数量为1000个,随机数种子是0,color是[1000,1]的一维数据,对应每个点的颜色
n_neighbors = 10
n_components = 2   #n_neighbors和n_components分别表示t-SNE算法中的近邻数和降维后的维度数fig = plt.figure(figsize=(15, 15))		#图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14)		#自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d')		#分为2行1列的子图布局,选择第1个子图,投影方式为3D
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral) #x[:, 0], x[:, 1], x[:, 2]代表x,y,z 绘制散点图,Spectral colormap将不同的颜色映射到数据集的不同标签上
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72)		# 将视角设置为仰角4度,方位角-72度# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components,perplexity=30)  #将原始数据降低到n_components维度;perplexity=30表示t-SNE算法的困惑度参数设置为30。
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2)   ##分为2行1列的子图布局,选择第2个子图
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
plt.show()

 实例2:手写数字

实例2结果

这个由于数据量太多,呈现的效果不是很明显 

实例2完整代码

from sklearn import preprocessing
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import torchvisiontraindata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=True, download=True)
testdata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=False, download=True)X_train = traindata.data    #[60000, 28, 28]
y_train = traindata.targets #[60000]
X_test = testdata.data      #[10000, 28, 28]
y_test = testdata.targets   #[10000]X_train = X_train.view(len(X_train), -1)  #[样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28
X_test = X_test.view(len(X_test), -1)# t-SNE降维处理
tsne = TSNE(n_components=3, verbose=1 ,random_state=42)  #n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。
train = tsne.fit_transform(X_train)
test = tsne.transform(X_test)  # 注意:使用已经训练好的t-SNE对象对验证集进行降维,不再fit_transform# 归一化处理
scaler = preprocessing.MinMaxScaler(feature_range=(-1,1))
train = scaler.fit_transform(train)
test = scaler.transform(test)  # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(20, 20))
ax = fig.add_subplot(projection='3d') #创建一个三维坐标轴,并将它添加到图像窗口中
ax.set_title('t-SNE process')
ax.scatter(train[:,0], train[:,1], train[:,2] , c=y_train, marker='o', label='Train', s=10)  
#c=y_train表示根据训练集的标签y_train来对散点进行颜色编码,每个标签对应一个特定的颜色。s=10将每个数据点的大小设置为 10 像素,使用marker='o'表示使用圆圈形状的标记来表示训练集
ax.scatter(test[:,0], test[:,1], test[:,2] , c=y_test, marker='^', label='Test', s=10)  # 使用marker='^'表示使用三角形形状的标记来表示验证集
ax.legend()  # 添加图例,以便区分训练集和验证集plt.show()

实例3:自己的实验(判断迁移是否有效)

实例3实验结果 :

实例3代码:

from __future__ import print_function
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
import os
from data_loader_new import DatasetFolder
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn import preprocessingdef sne():ckpt_model_0 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_0.pth"my_net_0 = torch.load(ckpt_model_0)ckpt_model_9 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_99.pth"my_net_9 = torch.load(ckpt_model_9)alpha = 0source_dataset_name = 'shallow_train'  ###target_dataset_name = 'deep_train'  ###source_image_root = os.path.join('..', 't_SNE', source_dataset_name)target_image_root = os.path.join('..', 't_SNE', target_dataset_name)dataset_source = DatasetFolder(source_image_root)dataloader_source = DataLoader(dataset=dataset_source,batch_size=len(dataset_source),shuffle=True,num_workers=8)data_source_iter = iter(dataloader_source)s_img, _, _ = next(data_source_iter)  #图片,标签,位置信息_, _, s_feature_0 = my_net_0(input_data=s_img, alpha=alpha)_, _, s_feature_9 = my_net_9(input_data=s_img, alpha=alpha)  #类别,领域,特征print("源域数据加载成功")dataset_target = DatasetFolder(root=target_image_root)dataloader_target = DataLoader(dataset=dataset_target,batch_size=len(dataset_target),shuffle=True,num_workers=8)data_target_iter = iter(dataloader_target)t_img,_ ,_ = next(data_target_iter)_, _, t_feature_0 = my_net_0(input_data=t_img, alpha=alpha)_, _, t_feature_9 = my_net_9(input_data=t_img, alpha=alpha)  # 类别,领域,特征print("目标域数据加载成功")# s_img = s_img.view(len(s_img), -1)  # [样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28# t_img = t_img.view(len(t_img), -1)s_feature_0 = s_feature_0.view(len(s_feature_0), -1)t_feature_0 = t_feature_0.view(len(t_feature_0), -1)s_feature_9 = s_feature_9.view(len(s_feature_9), -1)t_feature_9 = t_feature_9.view(len(t_feature_9), -1)tsne = TSNE(n_components=2, verbose=1,random_state=42)  # n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。# shallow_before = tsne.fit_transform(s_img.detach().numpy())# deep_before = tsne.fit_transform(t_img.detach().numpy())shallow_before = tsne.fit_transform(s_feature_0.detach().numpy())deep_before = tsne.fit_transform(t_feature_0.detach().numpy())shallow_after = tsne.fit_transform(s_feature_9.detach().numpy())deep_after = tsne.fit_transform(t_feature_9.detach().numpy())scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1))shallow_before = scaler.fit_transform(shallow_before)deep_before = scaler.fit_transform(deep_before)shallow_after = scaler.fit_transform(shallow_after)deep_after = scaler.transform(deep_after)  # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(30, 30))ax = fig.add_subplot(211)ax.set_title('第0轮次训练结果')ax.scatter(shallow_before[:, 0], shallow_before[:, 1], c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_before[:, 0], deep_before[:, 1], c='red', marker='^', label='deep', s=10)ax.legend()ax = fig.add_subplot(212)ax.set_title('第99轮次训练结果')ax.scatter(shallow_after[:,0], shallow_after[:,1],  c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_after[:,0], deep_after[:,1] , c='red', marker='^', label='deep', s=10)  # 使用marker='^'表示使用三角形形状的标记来表示验证集ax.legend()  # 添加图例,以便区分训练集和验证集plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号plt.show()if __name__ == '__main__':sne()print('done')

大家可以根据自己的实验需要更改代码,提醒若需要显示中文/负号,别忘了这两行代码哟!

plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

参考:http://t.csdnimg.cn/cshBV

这篇关于t-SNE高维数据可视化实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514015

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

PyQt6 键盘事件处理的实现及实例代码

《PyQt6键盘事件处理的实现及实例代码》本文主要介绍了PyQt6键盘事件处理的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录一、键盘事件处理详解1、核心事件处理器2、事件对象 QKeyEvent3、修饰键处理(1)、修饰键类

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很