快速排序的hoare法

2023-12-19 20:12
文章标签 快速 排序 hoare

本文主要是介绍快速排序的hoare法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

快速排序(hoare版本)

初级实现

问题改进 

中级实现

时空复杂度 

高级实现

三数取中 


快速排序(hoare版本)

历史背景:快速排序是Hoare于1962年提出的一种基于二叉树思想的交换排序方法
基本思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列

初级实现

实现步骤: 1、确定排序开始时key (每轮排序作为基准元素的元素下标) 、left (负责寻找大于基准元素的元素下标) 、right (负责寻找小于基准元素的元素下标) 三者的初始值:
int left = begin;  //数组首元素下标
int right = end;   //数组尾元素下标
int keyi = begin;  //即可以是首元素下标、也可以是尾元素下标,一般来说是首元素下标

2、right和left开始自己的寻找任务,当a[right] > a[keyi],right就--继续向左走,当a[left] < a[keyi],left就++继续向右走,当二者都在找的过程中在某一位置停下时(两个while循环均结束),交换此时的a[left]和a[right]:

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;// 右边找小while (a[right] > a[keyi]){--right;}// 左边找大while (a[left] < a[keyi]){++left;}Swap(&a[left], &a[right]);}

3、当left与right相遇即left == right时,此时元素的值一定小于基准元素的值,所以交换当前元素与基准元素的位置(因为我们要做的就是将小于基准元素的数放在左边,大于的放在右边)

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (a[right] > a[keyi]){--right;}// 左边找大while (a[left] < a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);
}

关于“为什么相遇位置一定会比基准元素小”的解释:

        因为我们规定右边先走(当然你也可以让左基准元素是数组尾元素然后左边先走,这里就不再分析了),这样就会有两种相遇的情况:

①right遇到left,right没找到比基准元素小的,一直走,找到时停下,然后left向右走,当二者相遇即right ==left时停下(原因我们后面会将),所处位置的元素的值小于基准元素:

②left遇到right,right先走,找到小于基准元素的位置停下,left开始找比基准元素大的,没有找到,一直走,遇到right停下,相遇位置是right,前面说过此时的位置应该是小于基准元素的位置(“right先走,找到小于基准元素的位置停下”)

至此,我们快速排序的初级实现已经完成了,接下来就是处理我们遗留的一些问题了: 

问题改进 

1、产生原因:有时我们写的代码只适用于部分数据,但是换成其它数据时就会出错,为了保证我们代码的通用性,我们要进行多次的用例测试,比如我们将数组换为{6,1,2,5,4,6,9,7,10,8}:

        

        可以发现,之前的代码并不能让right和left相遇,又因为我们规定right先走,所以我们为了能让二者相遇,需要保证left永远不会超过right,故在a[right] > a[keyi]之前加上left < right,即left < right && a[right] >= a[keyi],left也是一样的道理:

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] > a[keyi]){--right;}// 左边找大while (left < right && a[left] < a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);
}

2、产生原因:当我们将基准元素换到数组的中的某个位置时,它左侧的元素经过一系列检查与交换的操作后已经全部是小于基准元素的元素,右边的元素也已经全部是大于基准元素的元素,现在我们要做的就是将左右两边的元素均变为有序,当左右两边均有序时该数组就完全有序(原因自己想去😡)这就需要用到递归思想了(在前面我们说过hoare版本的快排是基于二叉树思想的),当我们尝试对上面的数组开始递归操作时,如果还是原来的代码就会出现下图所示的问题:

       

         可以发现, 原本我们是想通过右递归将右侧大于基准元素的几个元素变为有序,但可以看到的是只有当a[right] == 4时才会停下,此时就已经在左递归的范围内了,因此为了保证不会越界,我们还需要为a[right] > a[keyi]加上一个"=",即a[right] >= a[keyi],左递归也是一样的道理:

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] >= a[keyi]){--right;}// 左边找大while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);
}

中级实现

至此,我们开始进行递归操作,关于递归的过程如下图所示:

关于递归的代码也不再过多解释,自行理解即可: 

void QuickSort(int* a, int begin, int end)
{if (begin >= end)return;int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] >= a[keyi]){--right;}// 左边找大while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);keyi = left;// [begin, keyi-1] keyi [keyi+1, end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
}

以上就是一个“较为”完整的快速排序的代码 

时空复杂度 

最坏时间复杂度:O(N^2)(当数组已经降序有序或升序有序时,此时基准元素一直位于首元素或尾元素,n个元素要进行n次快速排序才能将当前的顺序改变,n*n)

最好时间复杂度:O(N*logN)每次划分都能将数组均匀地分成两个接近子数组,N个元素要进行logN次的排序,N*logN

空间复杂度:O(logN)或O(N)(在递归过程中需要使用栈来保存函数调用信息,所以快速排序的空间复杂度取决于递归调用的层数。在最坏情况下,递归调用栈可能达到O(n)的空间复杂度,最好的空间复杂度为O(logn))

高级实现

        当面对有序队列时,快速排序的效率确实会降低。这是因为快速排序的分区操作通常选择一个基准元素,并将小于等于基准的元素放在左侧,大于基准的元素放在右侧。如果输入数据已经有序,那么每次分区后只能将一个元素移到正确位置上,而剩余部分仍然需要进行递归调用。为了应对这种情况,可以采取以下方法来提高快速排序在有序队列上的效率:

  1. 随机化选择基准:通过随机选择基准值可以降低出现最坏情况(即已经有序)的概率。这样可以增加快速排序处理无序数据时的性能。

  2. 三数取中法:使用三数取中法来选择合适的基准值。从待排序数组中选取头、尾和中间位置上的三个数,并将它们按照大小顺序排列。然后选取其中位数作为划分子数组(即作为枢纽),以避免最坏情况发生。

  3. 插入排序优化:当待排序子数组长度较小时(比如小于某个阈值),可以切换到插入排序算法进行处理。插入算法对局部有序数据表现良好,在长度较短的子数组上可以提高排序效率。

  4. 优化递归调用:通过限制递归深度或者使用尾递归优化等方法,减少对有序数据的不必要处理。

        这些方法可以在特定情况下提高快速排序算法在有序队列上的性能,但需要根据具体场景选择合适的策略。

三数取中 

注意事项:获取的是下标为begin、midi、end的三个元素中的中位数(非最多,非最小)

完整代码如下:

int GetMidi(int* a, int begin, int end)
{int midi = (begin + end) / 2;// begin midi end 三个数选中位数if (a[begin] < a[midi]){if (a[midi] < a[end])return midi;   //返回a[midi] < a[midi] < a[end]else if (a[begin] > a[end])return begin;  //返回a[end] < a[begin] < a[midi]elsereturn end;    //返回a[begin] < a[end] < a[midi]}else // a[begin] > a[midi]{if (a[midi] > a[end])return midi;   //返回a[end] < a[mid] < a[begin]else if (a[begin] < a[end])return begin;  //返回a[midi] < a[begin] < a[end]else return end;    //返回a[midi] < a[end] < a[begin]}
}void QuickSort(int* a, int begin, int end)
{if (begin >= end)return;int midi = GetMidi(a, begin, end);Swap(&a[midi], &a[begin]);int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] >= a[keyi]){--right;}// 左边找大while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);keyi = left;// [begin, keyi-1] keyi [keyi+1, end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
}

~over~

这篇关于快速排序的hoare法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/513554

相关文章

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2