路透社新闻分类(多分类)--python深度学习

2023-12-19 09:10

本文主要是介绍路透社新闻分类(多分类)--python深度学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import keras
keras.__version__

‘2.0.8’

路透社新闻分类(多分类)

多分类任务(Keras内置数据集)

路透社数据集,它包含许多短新闻及其对应的主题,由路透社在 1986 年发布。它是一个简单的、广泛使用的文本分类数据集。

  • 包括 46 个不同的主题

1.数据导入

from keras.datasets import reuters(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)

IMDB 数据集一样,参数 num_words=10000 将数据限定为前 10 000 个最常出现的单词

len(train_data)

8982

len(test_data)

2246

# 与 IMDB 评论一样,每个样本都是一个整数列表(表示单词索引)
train_data[10]
# 样本对应的标签是一个 0~45 范围内的整数
train_labels[10]

3

将索引解码为新闻文本:索引减去了 3,因为 0、1、2 是为“padding”(填充)、“start of
sequence”(序列开始)、“unknown”(未知词)分别保留的索引

word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
decoded_newswire

‘? ? ? said as a result of its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from 70 cts in 1986 the company said pretax net should rise to nine to 10 mln dlrs from six mln dlrs in 1986 and rental operation revenues to 19 to 22 mln dlrs from 12 5 mln dlrs it said cash flow per share this year should be 2 50 to three dlrs reuter 3’

2.数据预处理

# seasons = ['Spring', 'Summer', 'Fall', 'Winter']
# list(enumerate(seasons))

[(0, ‘Spring’), (1, ‘Summer’), (2, ‘Fall’), (3, ‘Winter’)]

(1)数据向量化(One-hot编码)

import numpy as npdef vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1.return results# 训练数据向量化
x_train = vectorize_sequences(train_data)
# 测试数据向量化
x_test = vectorize_sequences(test_data)

array([[0., 1., 0., …, 0., 0., 0.],
[0., 0., 0., …, 0., 0., 0.],
[0., 0., 0., …, 0., 0., 0.]])

(2)标签向量化(One-hot编码)

# 方法一:自定义函数
def to_one_hot(labels, dimension=46):results = np.zeros((len(labels), dimension))for i, label in enumerate(labels):results[i, label] = 1.return results# 训练标签
one_hot_train_labels = to_one_hot(train_labels)
# 测试标签
one_hot_test_labels = to_one_hot(test_labels)
# 方法二:Keras 内置方法
from keras.utils.np_utils import to_categoricalone_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

3. 模型构建

对于前面用过的 Dense的堆叠,每层只能访问上一层输出的信息。如果某一层丢失了与
分类问题相关的一些信息,那么这些信息无法被后面的层找回,每一层都可能成为
信息瓶颈。

16 维空间可能太小了,无法学会区分 46 个不同的类别,故设置64 个单元。

# 1.模型定义
from keras import models
from keras import layersmodel = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

在这里插入图片描述

# 2.模型编译
model.compile(optimizer='rmsprop',loss='categorical_c![在这里插入图片描述](https://img-blog.csdnimg.cn/649dd0dcc3e74f76b4cbefbac741b99d.png)
rossentropy',   # 分类交叉熵metrics=['accuracy'])

4. 验证

在训练数据中留出 1000 个样本作为验证集

x_val = x_train[:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
# 3.模型训练(fit)
history = model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=512,validation_data=(x_val, y_val))
history_dict = history.history
history_dict.keys()

dict_keys([‘loss’, ‘accuracy’, ‘val_loss’, ‘val_accuracy’])

绘制损失曲线和精度曲线

import matplotlib.pyplot as pltloss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1, len(loss) + 1)plt.plot(epochs, loss, 'bo', label='Training loss')    # 'bo' 表示蓝色圆点
plt.plot(epochs, val_loss, 'b', label='Validation loss')    # 'b' 表示蓝色实线
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2pigEjIX-1685261494842)(output_29_0.png)]

plt.clf()   # clear figureacc = history.history['accuracy']
val_acc = history.history['val_accuracy']plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TnhuFmlF-1685261494842)(output_30_0.png)]

网络在训练 9 轮后开始过拟合,重新训练网络

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=8,batch_size=512,validation_data=(x_val, y_val))
results = model.evaluate(x_test, one_hot_test_labels)
results

[0.9732478260993958, 0.7867319583892822]

如果是一个完全随机的分类器哈哈哈

import copytest_labels_copy = copy.copy(test_labels)
np.random.shuffle(test_labels_copy)
float(np.sum(np.array(test_labels) == np.array(test_labels_copy))) / len(test_labels)

0.18477292965271594

5.预测

predictions = model.predict(x_test)
# predictions 中的每个元素都是长度为 46 的向量
predictions.shape

(2246, 46)

# 每个元素的总和为 1
np.sum(predictions[0])

0.99999994

np.argmax():获取array的某一个维度中数值最大的那个元素的索引

# 概率最大的类别就是预测类别
np.argmax(predictions[0])

3

番外1:处理label和loss的其他方法

之前采用One-hot编码,现在采用第一种:转化为整数张量

y_train = np.array(train_labels)
y_test = np.array(test_labels)

改变损失函数的选择:

  • 分类(One-hot)编码:使用categorical_crossentropy
  • 整数标签:使用sparse_categorical_crossentropy
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc'])

新的损失函数在数学上与 categorical_crossentropy 完全相同,二者只是接口不同

番外2: 中间层维度足够大的重要性

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=128,validation_data=(x_val, y_val))

现在网络的验证精度最大约为 71%,比前面下降了 8%。导致这一下降的主要原因在于,试图将大量信息(这些信息足够恢复 46 个类别的分割超平面)压缩到维度很小的中间空间。网络能够将大部分必要信息塞入这个四维表示中,但并不是全部信息。

在这里插入图片描述

这篇关于路透社新闻分类(多分类)--python深度学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511649

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到