路透社新闻分类(多分类)--python深度学习

2023-12-19 09:10

本文主要是介绍路透社新闻分类(多分类)--python深度学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import keras
keras.__version__

‘2.0.8’

路透社新闻分类(多分类)

多分类任务(Keras内置数据集)

路透社数据集,它包含许多短新闻及其对应的主题,由路透社在 1986 年发布。它是一个简单的、广泛使用的文本分类数据集。

  • 包括 46 个不同的主题

1.数据导入

from keras.datasets import reuters(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)

IMDB 数据集一样,参数 num_words=10000 将数据限定为前 10 000 个最常出现的单词

len(train_data)

8982

len(test_data)

2246

# 与 IMDB 评论一样,每个样本都是一个整数列表(表示单词索引)
train_data[10]
# 样本对应的标签是一个 0~45 范围内的整数
train_labels[10]

3

将索引解码为新闻文本:索引减去了 3,因为 0、1、2 是为“padding”(填充)、“start of
sequence”(序列开始)、“unknown”(未知词)分别保留的索引

word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
decoded_newswire

‘? ? ? said as a result of its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from 70 cts in 1986 the company said pretax net should rise to nine to 10 mln dlrs from six mln dlrs in 1986 and rental operation revenues to 19 to 22 mln dlrs from 12 5 mln dlrs it said cash flow per share this year should be 2 50 to three dlrs reuter 3’

2.数据预处理

# seasons = ['Spring', 'Summer', 'Fall', 'Winter']
# list(enumerate(seasons))

[(0, ‘Spring’), (1, ‘Summer’), (2, ‘Fall’), (3, ‘Winter’)]

(1)数据向量化(One-hot编码)

import numpy as npdef vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1.return results# 训练数据向量化
x_train = vectorize_sequences(train_data)
# 测试数据向量化
x_test = vectorize_sequences(test_data)

array([[0., 1., 0., …, 0., 0., 0.],
[0., 0., 0., …, 0., 0., 0.],
[0., 0., 0., …, 0., 0., 0.]])

(2)标签向量化(One-hot编码)

# 方法一:自定义函数
def to_one_hot(labels, dimension=46):results = np.zeros((len(labels), dimension))for i, label in enumerate(labels):results[i, label] = 1.return results# 训练标签
one_hot_train_labels = to_one_hot(train_labels)
# 测试标签
one_hot_test_labels = to_one_hot(test_labels)
# 方法二:Keras 内置方法
from keras.utils.np_utils import to_categoricalone_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

3. 模型构建

对于前面用过的 Dense的堆叠,每层只能访问上一层输出的信息。如果某一层丢失了与
分类问题相关的一些信息,那么这些信息无法被后面的层找回,每一层都可能成为
信息瓶颈。

16 维空间可能太小了,无法学会区分 46 个不同的类别,故设置64 个单元。

# 1.模型定义
from keras import models
from keras import layersmodel = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

在这里插入图片描述

# 2.模型编译
model.compile(optimizer='rmsprop',loss='categorical_c![在这里插入图片描述](https://img-blog.csdnimg.cn/649dd0dcc3e74f76b4cbefbac741b99d.png)
rossentropy',   # 分类交叉熵metrics=['accuracy'])

4. 验证

在训练数据中留出 1000 个样本作为验证集

x_val = x_train[:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
# 3.模型训练(fit)
history = model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=512,validation_data=(x_val, y_val))
history_dict = history.history
history_dict.keys()

dict_keys([‘loss’, ‘accuracy’, ‘val_loss’, ‘val_accuracy’])

绘制损失曲线和精度曲线

import matplotlib.pyplot as pltloss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1, len(loss) + 1)plt.plot(epochs, loss, 'bo', label='Training loss')    # 'bo' 表示蓝色圆点
plt.plot(epochs, val_loss, 'b', label='Validation loss')    # 'b' 表示蓝色实线
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2pigEjIX-1685261494842)(output_29_0.png)]

plt.clf()   # clear figureacc = history.history['accuracy']
val_acc = history.history['val_accuracy']plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TnhuFmlF-1685261494842)(output_30_0.png)]

网络在训练 9 轮后开始过拟合,重新训练网络

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=8,batch_size=512,validation_data=(x_val, y_val))
results = model.evaluate(x_test, one_hot_test_labels)
results

[0.9732478260993958, 0.7867319583892822]

如果是一个完全随机的分类器哈哈哈

import copytest_labels_copy = copy.copy(test_labels)
np.random.shuffle(test_labels_copy)
float(np.sum(np.array(test_labels) == np.array(test_labels_copy))) / len(test_labels)

0.18477292965271594

5.预测

predictions = model.predict(x_test)
# predictions 中的每个元素都是长度为 46 的向量
predictions.shape

(2246, 46)

# 每个元素的总和为 1
np.sum(predictions[0])

0.99999994

np.argmax():获取array的某一个维度中数值最大的那个元素的索引

# 概率最大的类别就是预测类别
np.argmax(predictions[0])

3

番外1:处理label和loss的其他方法

之前采用One-hot编码,现在采用第一种:转化为整数张量

y_train = np.array(train_labels)
y_test = np.array(test_labels)

改变损失函数的选择:

  • 分类(One-hot)编码:使用categorical_crossentropy
  • 整数标签:使用sparse_categorical_crossentropy
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc'])

新的损失函数在数学上与 categorical_crossentropy 完全相同,二者只是接口不同

番外2: 中间层维度足够大的重要性

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=128,validation_data=(x_val, y_val))

现在网络的验证精度最大约为 71%,比前面下降了 8%。导致这一下降的主要原因在于,试图将大量信息(这些信息足够恢复 46 个类别的分割超平面)压缩到维度很小的中间空间。网络能够将大部分必要信息塞入这个四维表示中,但并不是全部信息。

在这里插入图片描述

这篇关于路透社新闻分类(多分类)--python深度学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_46726459/article/details/130913963
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/511649

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre