深度学习多分类问题--路透社数据集

2023-12-19 09:10

本文主要是介绍深度学习多分类问题--路透社数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境使用keras为前端,TensorFlow为后端

本次构建一个网络,将路透社新闻划分为46个类别。因为有多个类别,所以这是多分类问题。每个数据点只能划分到一个类别,所以,这是一个单标签,多分类问题。如果每个数据点可以划分到多个类别,那么就是多标签,多分类问题。

首先加载数据集

from keras.datasets import reuters
#限定为前10000个最常出现的单词
(train_data,train_labels),(test_data,test_labels) = reuters.load_data(num_words=10000)

准备数据,将数据向量化

import numpy as npdef vectorize_sequences(sequences,dimension=10000):results = np.zeros((len(sequences),dimension))for i,sequence in enumerate(sequences):results[i,sequence] = 1return results
#训练数据向量化
x_train = vectorize_sequences(train_data)
#测试数据向量化
x_test = vectorize_sequences(test_data)
def to_one_hot(labels,dimension=46):results = np.zeros((len(labels),dimension))for i,label in enumerate(labels):results[i,label] = 1return results
#训练标签向量化
one_hot_train_labels = to_one_hot(train_labels)
#测试标签向量化
one_hot_test_labels = to_one_hot(test_labels)

构建网络

由于输出类别的数量为46个,所以如果中间层的维度太低,就有可能丢失相关信息。所以这里使用64个单元的中间层

from keras import models
from keras import layersmodel = models.Sequential()
model.add(layers.Dense(64,activation = 'relu',input_shape=(10000,)))
model.add(layers.Dense(64,activation='relu'))
model.add(layers.Dense(46,activation='softmax'))

网络的最后一层是大小为46的Dense层,所以对于每一个输入的样本,都会输出一个46维的向量

最后一层使用了softmax激活。网络将输出在46个不同输出类别上的概率分布,46维向量的总和为1

对于此例,最好的损失函数是分类交叉熵。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真实分布距离的最小化,训练网络可使输出结果尽可能接近真实标签。

编译模型:

model.compile(optimizer ='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

留出验证集

x_val = x_train[0:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[0:1000]
partial_y_train = one_hot_train_labels[1000:]

训练模型

#fit函数用于训练模型,partial_x_train是输入数据,partial_y_train是标签,x_val是验证集的数据,y_val是验证集的标签
history = model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=512,validation_data=(x_val, y_val))

绘制训练损失和验证损失

import matplotlib.pyplot as pltloss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1,len(loss) + 1)plt.plot(epochs,loss,'bo',label='Training loss')
plt.plot(epochs,val_loss,'b',label = 'Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

plt.clf()acc = history.history['acc']
val_acc = history.history['val_acc']plt.plot(epochs,acc,'bo',label='training acc')
plt.plot(epochs,val_acc,'b',label='Valdation acc')
plt.title('training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()plt.show()

从图中可看出,网络在第九轮后开始过拟合,所以从新训练一个网络,9个轮次

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=9,batch_size=512,validation_data=(x_val, y_val))
#model.evaluate函数计算在某些输入数据上模型的误差,x_test为输入数据,one_hot_test_labels为标签
results = model.evaluate(x_test, one_hot_test_labels)
results

 结果:精度约为78%

[0.984747028096064, 0.7845057880676759]

在测试数据上生成预测

predictions = model.predict(x_test)
predictions[0]
array([2.6853504e-05, 6.3310239e-05, 6.6731780e-05, 6.8838394e-01,2.9023853e-01, 2.4886356e-07, 1.4353501e-04, 6.5791741e-05,8.7031247e-03, 1.0868406e-05, 4.8362726e-05, 3.0135105e-03,3.6972619e-05, 1.9051113e-04, 6.1894898e-06, 2.5392617e-05,9.5336814e-04, 5.4524787e-04, 4.7846398e-04, 1.1405107e-03,1.7468960e-03, 5.3577451e-04, 7.9001420e-06, 3.4499905e-04,1.4113671e-05, 2.3861769e-04, 9.4969837e-06, 3.9085553e-05,1.6669346e-05, 1.6799838e-04, 7.7905535e-04, 5.3265714e-04,2.0784488e-05, 3.2127515e-05, 8.2047052e-05, 3.2226784e-05,7.1236005e-05, 5.9507878e-05, 9.2954113e-05, 3.8922983e-04,7.3304640e-05, 4.6987369e-04, 2.6572573e-06, 7.9232501e-05,8.1832422e-06, 1.2112055e-05], dtype=float32)
predictions[0].shape
#输出为(46,0),即每个元素都是长度为46的向量
np.argmax(predictions[0])
#输出为3,对应的概率约为68.8%

总结:

1.如果要对n个类别的数据点进行分类,网络的最后一层应该是大小为n的Dense层

2.对于单标签,多分类问题,网络的最后一层应该使用softmax激活,这样可以输出在n个输出类别上的概率分布

3.这种问题的损失函数几乎总是应该使用分类交叉熵,它将网络输出的概率分布与目标的真实分布之间的距离最小化

4.处理多分类问题的标签有两种方法

   ①通过分类编码对标签进行编码,然后使用分类交叉熵作为损失函数

   ②将标签编码为整数,使用sparse_categorical_crossentropy损失函数

5.如果需要将数据划分到许多类别中,避免使用太小的中间层,以免在网络中造成信息瓶颈

 

 

 

这篇关于深度学习多分类问题--路透社数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511635

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: