为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?

2023-12-17 18:12

本文主要是介绍为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?

  • 一、背景说明
  • 二、DB架构差异
  • 三、数据结构差异
  • 四、存储结构差异
  • 五、总结

一、背景说明

图(封面 doris ? mysql)!

经常有小伙伴发出这类直击灵魂的疑问:

Q:“为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?”
A:“因为Apache Doris是OLAP,MySQL是OLTP啊!”
Q:“SO?”
A:“因为一个是AP场景的DB,一个是TP场景的DB啊!”
Q:“SO?”

[emm] 要不先来简单概述下OLAP和OLTP

OLAP(Online Analytical Processing,联机分析处理)主要用于大数据场景下复杂的分析查询和决策支持,重点在于数据分析、多维度分析和报表生成。例如,销售数据分析、市场趋势预测、业务报表生成等。

OLTP(Online Transaction Processing,联机事务处理)主要用于处理实时事务和业务操作,重点在于高并发、高可靠性和数据一致性。例如,在线购物、银行交易、航空订票等需要频繁读写小规模数据的场景。

这么一概述,OLAP和OLTP在应用场景和目的上确实有所不同,那么是什么原因导致的呢?

接下来,咱们从OLAP(Apache Doris为例)和OLTP(Mysql为例)的DB架构、数据结构以及存储结构的维度来一探究竟吧!

二、DB架构差异

在这里插入图片描述

  • 数据分布:数据被分割成多个部分,每个BE节点都独立地存储一部分数据,节点之间不共享存储,每个节点独立处理自己所负责的数据。
  • 数据处理:每个BE节点都独立地处理自己所负责的数据,节点之间可以并行地进行数据处理,从而提高系统的整体性能。
  • 扩展性:更注重水平横向扩展,通过增加更多的节点来分担数据和负载,从而提供更好的可扩展性和负载均衡性能。
  • 一致性:通过一致性协议和分布式事务来维护数据的一致性。

Apache Doris 是典型的 Shared Nothing 分布式计算架构,每个BE都有自己的CPU、内存和硬盘等,不存在共享资源。多BE采用MPP(大规模并行处理)模式,各处理单元之间通过协议通信,并行处理和扩展能力更好,为 Apache Doris 带来了高可用、极简部署、横向可扩展以及强大的实时分析性能等一系列核心特色。

在这里插入图片描述

  • 数据分布:数据存储在服务端,客户端通过网络与服务端进行通信并发送请求,服务端负责处理请求并返回结果。
  • 数据处理:服务端负责接收并处理客户端的请求,包括查询、更新等操作,承担着数据处理的主要责任。
  • 扩展性:通常需要对服务端进行垂直扩展,即增加服务端的硬件资源(如CPU和内存等),以满足更高的并发需求。
  • 一致性:服务端负责维护数据的一致性,保证多个客户端对数据的并发操作不会导致数据的不一致性。

MySQL是典型的 C/S(Client/Server)架构,主要被分为客户端和服务端两部分。客户端只需发送请求并接收结果,将数据处理和存储的职责集中在服务器端,通过专门的服务器、高效的网络通信和并发控制机制(如锁、事务隔离级别等)支持,更适合处理在线业务的高并发读写场景。

但对于大规模数据的复杂计算场景,可能需要进行大量的计算和存储操作,这会给服务器带来较大的负载压力,如果服务器的计算能力有限或者无法有效扩展,可能无法满足大数据复杂计算的需求。另外,复杂计算往往涉及多个数据节点之间的交互和计算过程,需要进行并发控制和保证数据的一致性。在C/S架构中,这些并发控制和一致性的工作通常由服务器端负责,可能面临较高的竞争和冲突,导致性能下降或者数据不一致的问题。

SO,从DB架构设计上的差异而言,Apache Doris 适合做大数据的复杂计算,MySQL不适合。

三、数据结构差异

通常而言,数据库中索引的作用是做数据的快速检索,而快速检索的实现的本质是数据结构。基于不同数据结构的选择,实现各种数据快速检索。

在这里插入图片描述

Apache Doris 底层存储引擎提供了丰富的索引类型来提高数据查询效率。分别是 Short Key 前缀索引(快速扫描)、Ordinal 索引(索引加速)、Zone Map索引(快速定位)、BitMap 索引(人群圈选)、 Bloom Filter 索引(高基数等值查询)和倒排索引时(文本检索)等。前缀索引、Ordinal 索引和 Zone Map 索引不需要用户干预,会随着数据写入智能生成;Bitmap 索引、 Bloom Filter 索引和倒排索引需要用户干预,数据写入时默认不会生成,用户可以有选择地为指定的列添加这3种索引。

基于这些索引,Apache Doris 进行不同场景的大规模数据的复杂计算时,可谓事半功倍。

在这里插入图片描述

MySQL 底层数据引擎以插件形式设计,最常见的是 Innodb 引擎和 Myisam 引擎,用户可以根据个人需求选择不同的引擎作为 Mysql 数据表的底层引擎。这里,我们选择Innodb引擎来分析。

Innodb引擎以B+树作为索引的数据结构,从Hash、二叉树、红黑树、AVL树和B树推演而定。B+树节点存储的是索引,叶子节点是真正数据存储的地方,叶子节点用了链表连接起来,这个链表本身就是有序的,因此具有高效的范围查询,且能够支持快速的插入、删除、高并发访问等优点,但为什么不适合大数据的复杂计算场景?

  1. 磁盘I/O次数增多:随着数据的增加,B+树的高度会逐渐增加,这会导致查询时需要进行更多的磁盘I/O操作,从而影响查询效率。
  2. 索引维护成本增加:对于海量数据集,B+树索引的维护成本也会逐渐增加,例如插入、删除或者更新操作会导致索引的重构,从而影响数据处理的效率。
  3. 节点分裂频繁:在B+树索引中,节点分裂的次数与数据的分布情况有关。如果数据分布不均匀,节点分裂的频率就会增加,从而导致索引的重构和磁盘I/O负载增加。

SO,从数据结构设计上的差异而言,Apache Doris 适合做大数据的复杂计算,MySQL不适合。

四、存储结构差异

在这里插入图片描述

Apache Doris 默认为例存储(2.0支持行存高并发点查特性),相较于Mysql 主要是行存储模式,在大规模数据的复杂计算中更具优势:

  1. 数据压缩效率:列存储模式可以对每一列的数据进行独立的压缩,这样可以通过更好的压缩算法和跳过无关数据来减小存储空间,并且可以提高读取数据时的I/O效率。在行存储模式下,当使用通用的压缩算法对整行数据进行压缩时,由于不同列之间的数据类型和取值范围差异较大,通常较难获得很高的压缩比。
  2. 查询性能优化:在复杂计算中,通常需要对大量的列进行聚合、过滤和统计操作。列存储模式可以只读取涉及到的列数据,避免了读取不必要的数据,从而提高查询性能。在行存储模式中,进行聚合、过滤或者统计某些特定列的数值时,需要读取整行数据,包括不相关的列,导致读取了不必要的数据,影响了查询性能。
  3. 数据排列连续:列存储模式将同一列的数据放在一起存储,这样相同的数据类型可以连续存储,减少了存储的冗余。同时,列存储模式还可以使用更加紧凑的数据编码方式,进一步减少存储空间的占用。在行存储模式中,每行数据都包含多个列的数值,当表中存在大量的重复数据时,这些数据会被存储多次,从而导致存储冗余,影响查询效率。
  4. 并行处理能力:列存储模式可以更好地支持并行计算,在大规模数据复杂计算时可以充分利用多核和分布式计算资源,加速数据处理的速度。在行存储模式中,需要对大量行进行扫描和过滤的复杂查询场景下,由于每行数据都包含多个列的数值,需要同时访问大量行数据,可能会导致并行查询的效率下降。

SO,从存储结构设计上的差异而言,Apache Doris 适合做大数据的复杂计算,MySQL不适合。

五、总结

SO,Apache Doris 由于是分布式列存架构,且具有丰富的索引支撑,非常适用用于大数据场景下复杂的分析查询和决策支持等;MySQL 基于C/S 行存架构,结合 B+tree 能够高效地支持小规模数据频繁读写、快速响应在线业务,主要用于处理实时事务和业务操作,各有千秋!

【为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?】 分享至此结束,查阅过程中若遇到问题欢迎留言交流。

这篇关于为什么Apache Doris适合做大数据的复杂计算,MySQL不适合?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505349

相关文章

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

MySQL 多表连接操作方法(INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN)

《MySQL多表连接操作方法(INNERJOIN、LEFTJOIN、RIGHTJOIN、FULLOUTERJOIN)》多表连接是一种将两个或多个表中的数据组合在一起的SQL操作,通过连接,... 目录一、 什么是多表连接?二、 mysql 支持的连接类型三、 多表连接的语法四、实战示例 数据准备五、连接的性

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息