DeciLM-7B:突破极限,高效率、高精准度的70亿参数AI模型

2023-12-16 17:36

本文主要是介绍DeciLM-7B:突破极限,高效率、高精准度的70亿参数AI模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在人工智能领域,语言模型的发展速度令人瞩目。Deci团队最近推出了一款具有革命性意义的语言模型——DeciLM-7B。这款模型在速度和精确度上都实现了显著的突破,以其70亿参数的规模,在语言模型的竞争中脱颖而出。

  • Huggingface模型下载: https://huggingface.co/Deci

  • AI快站模型免费加速下载: https://aifasthub.com/models/Deci

DeciLM-7B的核心优势
  • 准确度: DeciLM-7B在Open LLM Leaderboard上的平均得分高达61.55分,超过了同等级别的竞争者,如Mistral 7B。这种准确性的提升使得DeciLM-7B在从客户服务机器人到复杂数据分析等各种应用中更加可靠和精确。

  • 吞吐量性能: 在PyTorch基准测试中,DeciLM-7B展现了显著的性能优势,其吞吐量比Mistral 7B高出1.83倍,超过Llama 2 7B的2.39倍。

  • 速度提升: 结合Deci的Infery-LLM推理SDK,DeciLM-7B的性能得到了进一步加速。这种强大的组合在吞吐量方面设定了新标准,速度比Mistral 7B快4.4倍

  • 创新架构: DeciLM-7B采用了变量群组查询关注(Variable Grouped Query Attention)技术,这是在准确度和速度之间达到最佳平衡的一大突破。

  • 指令调优变种: DeciLM-7B采用了LoRA对SlimOrca数据集进行指令调优,生成的DeciLM-7B-instruct在Open LLM Leaderboard上的平均分数达到63.19分。

架构优势和技术创新

DeciLM-7B的卓越性能源于其战略性的实施变量群组查询关注(GQA)。传统的多查询关注(MQA)在减少内存使用和计算开销方面虽有优势,但有时会牺牲模型质量。GQA通过为每个群组提供独特的键值对,提供了更细致的注意力机制。DeciLM-7B通过在不同层中使用不同的GQA群组参数,实现了速度和准确性的最佳平衡。

此外,DeciLM-7B的架构是利用Deci的先进神经架构搜索(NAS)引擎AutoNAC开发的。AutoNAC通过更高效的计算方式自动化搜索过程,对于确定GQA群组参数在每个变压器层中的最佳配置至关重要。

成本效益和实际应用

DeciLM-7B联合Infery-LLM不仅提升了模型能力,还大幅降低了与其他推理端点提供商相比的成本。这种经济效率使得DeciLM-7B和Infery-LLM成为企业构建、部署和扩展基于LLM的应用程序的理想选择,同时最小化计算成本。

DeciLM-7B和Infery-LLM的应用范围广泛,可以帮助各行各业革新操作方式,推动创新。在客户服务领域,这种组合可以支持高效理解并响应客户查询的复杂聊天机器人,提升用户体验。在医疗、法律、市场和金融等文本和研究密集型专业领域,DeciLM-7B和Infery-LLM的结合尤为有影响力,可执行文本总结、预测分析、文档分析、趋势预测和情感分析等任务。

开放源代码和未来展望

DeciLM-7B作为开源模型,采用Apache 2.0许可,可供商业使用。我们相信,DeciLM-7B的卓越性能,结合显著的成本节约和对开源原则的承诺,将在LLM基础应用程序的开发中带来重大进步。

模型下载

Huggingface模型下载

https://huggingface.co/Deci

AI快站模型免费加速下载

https://aifasthub.com/models/Deci

这篇关于DeciLM-7B:突破极限,高效率、高精准度的70亿参数AI模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/501317

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效