CS231n作业笔记2.1:两层全连接神经网络的分层实现

2023-12-15 23:38

本文主要是介绍CS231n作业笔记2.1:两层全连接神经网络的分层实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CS231n简介

详见 CS231n课程笔记1:Introduction。
本文都是作者自己的思考,正确性未经过验证,欢迎指教。

作业笔记

1. 神经网络的分层实现

实现全连接层+ReLU层的前向传播与后向传播。
参考资料:CS231n课程笔记4.2:神经网络结构,CS231n课程笔记4.1:反向传播BP, CS231n作业笔记1.6:神经网络的误差与梯度计算,CS231n作业笔记1.5:Softmax的误差以及梯度计算。

  1. 全连接前向传播:out = x.reshape([x.shape[0],-1]).dot(w)+b
  2. 全连接后向传播:
x, w, b = cachedx, dw, db = None, None, Nonedw = x.reshape([x.shape[0],-1]).T.dot(dout)db = np.sum(dout,axis = 0)dx = dout.dot(w.T).reshape(x.shape)
  1. ReLU的前向传播:out = x*(x>0)
  2. ReLU的后向传播:dx = dout * (x>0)

2. 两层全连接神经网络的打包实现

把上诉神经层串联起来,构造两层全连接神经网络。

2.1. 参数初始化

使用numpy.random.randn函数,用于服从标准分布的随机参数。注意:不要使用numpy.random.rand函数(用于生成[0,1)内的平均分布);也可以使用numpy.random.normal函数。

    self.params['W1'] = np.random.randn(input_dim,hidden_dim)*weight_scaleself.params['b1'] = np.zeros(hidden_dim)self.params['W2'] = np.random.randn(hidden_dim,num_classes)*weight_scaleself.params['b2'] = np.zeros(num_classes)

2.2. 计算loss以及gradient

此函数用于计算loss,以及各个参数的梯度。大致上就是把上诉两个神经层以及最后一层softmax按照一定的形式串联起来。
注意:对于全连接神经网络,bias部分不进行正则化。因为bias不与数据相乘,所以不具有控制数据各个维度对最后影响大小的作用。(然而如果归一化做的好,对bias做正则化,不会使得效果变差,原因可能是因为bias比weight的数目少太多,模型能够支持对于bias的变化以获得更好的准确率)[参考资料:Neural Networks Part 2: Setting up the Data and the Loss]

1.计算score

    scores = NoneW1,b1,W2,b2 = self.params['W1'],self.params['b1'],self.params['W2'],self.params['b2']fc1_out,fc1_cache = affine_forward(X,W1,b1)relu_out,relu_cache = relu_forward(fc1_out)fc2_out,fc2_cache = affine_forward(relu_out,W2,b2)scores = fc2_out

2.计算loss以及梯度

    loss, grads = 0, {}loss,dscores = softmax_loss(scores,y)loss += 0.5*self.reg*(np.sum(W1**2)+np.sum(W2**2))drelu_out,dW2,db2 = affine_backward(dscores,fc2_cache)dfc1_out = relu_backward(drelu_out,relu_cache)_,dW1,db1 = affine_backward(dfc1_out,fc1_cache)dW1 += self.reg*W1#db1 += self.reg*b1dW2 += self.reg*W2#db2 += self.reg*b2grads['W1'],grads['b1'],grads['W2'],grads['b2'] = dW1,db1,dW2,db2

这篇关于CS231n作业笔记2.1:两层全连接神经网络的分层实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498318

相关文章

MySQL 多表连接操作方法(INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN)

《MySQL多表连接操作方法(INNERJOIN、LEFTJOIN、RIGHTJOIN、FULLOUTERJOIN)》多表连接是一种将两个或多个表中的数据组合在一起的SQL操作,通过连接,... 目录一、 什么是多表连接?二、 mysql 支持的连接类型三、 多表连接的语法四、实战示例 数据准备五、连接的性

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll