Spark 3.0 AQE 专治各种数据倾斜

2023-12-14 21:40
文章标签 数据 spark 倾斜 3.0 专治 aqe

本文主要是介绍Spark 3.0 AQE 专治各种数据倾斜,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、前言

近些年来,在对Spark SQL优化上,CBO是最成功的一个特性之一。

CBO会计算一些和业务数据相关的统计数据,来优化查询,例如行数、去重后的行数、空值、最大最小值等。
Spark根据这些数据,自动选择BHJ或者SMJ,对于多Join场景下的Cost-based Join Reorder,来达到优化执行计划的目的。
但是,由于这些统计数据是需要预先处理的,会过时,所以我们在用过时的数据进行判断,在某些情况下反而会变成负面效果,拉低了SQL执行效率。
AQE在执行过程中统计数据,并动态地调节执行计划,从而解决了这个问题。

2、框架

对于AQE而言,最重要的问题就是什么时候去重新计算优化执行计划。Spark任务的算子如果管道排列,依次并行执行。然而,shuffle或者broadcast exchange会打断算子的排列执行,我们称其为物化点(Materialization Points),并且用"Query Stages"来代表那些被物化点所分割的小片段。每个Query Stage会产出中间结果,当且仅当该stage及其并行的所有stage都执行完成后,下游的Query Stage才能被执行。所以当上游部分stage执行完成,partitions的统计数据也获取到了,并且下游还未开始执行,这就给AQE提供了reoptimization的机会。

在查询开始时,生成完了执行计划,AQE框架首先会找到并执行那些不存在上游的stages。一旦这些stage有一个或多个完成,AQE框架就会将其在physical plan中标记为完成,并根据已完成的stages提供的执行数据来更新整个logical plan。基于这些新产出的统计数据,AQE框架会执行optimizer,根据一系列的优化规则来进行优化;AQE框架还会执行生成普通physical plan的optimizer以及自适应执行专属的优化规则,例如分区合并、数据倾斜处理等。于是,我们就获得了最新优化过的执行计划和一些已经执行完成的stages,至此为一次循环。接着我们只需要继续重复上面的步骤,直到整个query都跑完。

在Spark 3.0中,AQE框架拥有三大特征:

  • 动态折叠shuffle过程中的partition

  • 动态选择join策略

  • 动态优化存在数据倾斜的join

接下来我们就具体来看看这三大特征。

① 动态合并shuffle partitions

在我们处理的数据量级非常大时,shuffle通常来说是最影响性能的。因为shuffle是一个非常耗时的算子,它需要通过网络移动数据,分发给下游算子。

在shuffle中,partition的数量十分关键。partition的最佳数量取决于数据,而数据大小在不同的query不同stage都会有很大的差异,所以很难去确定一个具体的数目:

  • 如果partition过少,每个partition数据量就会过多,可能就会导致大量数据要落到磁盘上,从而拖慢了查询。

  • 如果partition过多,每个partition数据量就会很少,就会产生很多额外的网络开销,并且影响Spark task scheduler,从而拖慢查询。

为了解决该问题,我们在最开始设置相对较大的shuffle partition个数,通过执行过程中shuffle文件的数据来合并相邻的小partitions。
例如,假设我们执行SELECT max(i) FROM tbl GROUP BY j,表tbl只有2个partition并且数据量非常小。我们将初始shuffle partition设为5,因此在分组后会出现5个partitions。若不进行AQE优化,会产生5个tasks来做聚合结果,事实上有3个partitions数据量是非常小的。
然而在这种情况下,AQE只会生成3个reduce task。

② 动态切换join策略

在Spark所支持的众多join中,broadcast hash join性能是最好的。因此,如果需要广播的表的预估大小小于了广播限制阈值,那么我们就应该将其设为BHJ。但是,对于表的大小估计不当会导致决策错误,比如join表有很多的filter(容易把表估大)或者join表有很多其他算子(容易把表估小),而不仅仅是全量扫描一张表。

由于AQE拥有精确的上游统计数据,因此可以解决该问题。比如下面这个例子,右表的实际大小为15M,而在该场景下,经过filter过滤后,实际参与join的数据大小为8M,小于了默认broadcast阈值10M,应该被广播。


在我们执行过程中转化为BHJ的同时,我们甚至可以将传统shuffle优化为本地shuffle(例如shuffle读在mapper而不是基于reducer)来减小网络开销。

③ 动态优化数据倾斜

数据倾斜是由于集群上数据在分区之间分布不均匀所导致的,它会拉慢join场景下整个查询。AQE根据shuffle文件统计数据自动检测倾斜数据,将那些倾斜的分区打散成小的子分区,然后各自进行join。

我们可以看下这个场景,Table A join Table B,其中Table A的partition A0数据远大于其他分区。

AQE会将partition A0切分成2个子分区,并且让他们独自和Table B的partition B0进行join。


如果不做这个优化,SMJ将会产生4个tasks并且其中一个执行时间远大于其他。经优化,这个join将会有5个tasks,但每个task执行耗时差不多相同,因此个整个查询带来了更好的性能。

3、使用

我们可以设置参数spark.sql.adaptive.enabled为true来开启AQE,在Spark 3.0中默认是false,并满足以下条件:

  • 非流式查询

  • 包含至少一个exchange(如join、聚合、窗口算子)或者一个子查询

AQE通过减少了对静态统计数据的依赖,成功解决了Spark CBO的一个难以处理的trade off(生成统计数据的开销和查询耗时)以及数据精度问题。相比之前具有局限性的CBO,现在就显得非常灵活 - 我们再也不需要提前去分析数据了!

这篇关于Spark 3.0 AQE 专治各种数据倾斜的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493976

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元