Spark 3.0自适应查询执行框架(AQE)

2023-12-14 21:40

本文主要是介绍Spark 3.0自适应查询执行框架(AQE),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. AQE设计原理

        AQE 可以理解成是 Spark Catalyst 之上的一层,它可以在运行时修改 Spark plan。

        AQE 完全基于精确的运行时统计信息进行优化,引入了 Query Stages 的概念 ,并且以 Query Stage 为粒度,进行运行时的优化,其工作原理如下所示:

图片

 

        Query Stage 是由 Shuffle 或 broadcast exchange 划分的,在运行下一个 Query Stage 之前,上一个 Query Stage 的计算需要全部完成,这是进行运行时优化的绝佳时机,因为此时所有分区上的数据统计都是可用的,并且后续操作还没有开始。

2. AQE优化重点

2.1 自适应调整分区数

        开启自适应调整分区数后,Spark 将会把连续的 shuffle partitions 进行合并(coalesce contiguous shuffle partitions)以减少分区数。

参数设置

spark.sql.adaptive.enabled

spark.sql.adaptive.coalescePartitions.enabled

spark.sql.adaptive.advisoryPartitionSizeInBytes

2.2 动态优化倾斜的 join

        AQE解决倾斜Join时,从 shuffle 文件统计信息中自动检测到这种倾斜。然后,它将倾斜的分区分割成更小的子分区,这些子分区将分别从另一端连接到相应的分区。

参数设置

spark.sql.adaptive.skewJoin.enabled :是否启用倾斜 Join 处理;spark.sql.adaptive.skewJoin.skewedPartitionFactor:如果一个分区的大小大于这个数乘以分区大小的中值(median partition size),并且也大于spark.sql.adaptive.skewedPartitionThresholdInBytes 这个属性值,那么就认为这个分区是倾斜的。

spark.sql.adaptive.skewedPartitionThresholdInBytes:判断分区是否倾斜的阈值,默认为 256MB,这个参数的值应该要设置的比 spark.sql.adaptive.advisoryPartitionSizeInBytes 大。

2.3 动态将 Sort Merge Joins 转换成 Broadcast Joins

        Spark支持各种Join策略,其中broadcast hash join通常是性能最好的,前提是参加join的一张表的数据小于广播阀值。

        很多情况spark估算表大小是否小于广播阀值的时候,可能估算出错,比如表的统计信息不准确等。有了 AQE,Spark 可以利用运行时的统计信息动态调整Join方式,只要参与Join的任何一方的大小小于广播大小的阈值时,即可将 Join 策略调整为 broadcast hash join。

这篇关于Spark 3.0自适应查询执行框架(AQE)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493974

相关文章

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Spring Bean初始化及@PostConstruc执行顺序示例详解

《SpringBean初始化及@PostConstruc执行顺序示例详解》本文给大家介绍SpringBean初始化及@PostConstruc执行顺序,本文通过实例代码给大家介绍的非常详细,对大家的... 目录1. Bean初始化执行顺序2. 成员变量初始化顺序2.1 普通Java类(非Spring环境)(

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口