MD-MTSP:开普勒优化算法KOA求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)

本文主要是介绍MD-MTSP:开普勒优化算法KOA求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、开普勒优化算法KOA

开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。

参考文献:

[1]Mohamed Abdel-Basset, Reda Mohamed, Shaimaa A. Abdel Azeem, Mohammed Jameel, Mohamed Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion, Knowledge-Based Systems, 2023. DOI: Redirecting

二、多仓库多旅行商问题MD-MTSP

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次,需要求解出满足上述要求并且代价最小的分配方案,其中的代价通常用总路程长度来代替,当然也可以是时间、费用等。多仓库多旅行商问题是其中一种多旅行商问题。

多旅行商问题(Multiple Traveling Salesman Problem, MTSP):单仓库多旅行商问题及多仓库多旅行商问题(含动态视频)_IT猿手的博客-CSDN博客

多仓库多旅行商问题(Multi-Depot Multiple Travelling Salesman Problem, MD-MTSP):𝑚个推销员从𝑚座不同的城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后回到各自出发的城市,这种问题模型被称之为MD-MTSP。

三、开普勒优化算法KOA求解MD-MTSP

本文选取国际通用的TSP实例库TSPLIB中的测试集bayg29作为测试例子,数据集可以自行修改。

3.1部分代码(可更改起点及旅行商个数)

close all
clear
clc
global data  StartPoint Tnum
%数据集参考文献  REINELT G.TSPLIB-a traveling salesman problem[J].ORSA Journal on Computing,1991,3(4):267-384.
% 导入TSP数据集 bayg29
load('data.txt')
StartPoint=[1 5 15 16 20];%起点城市的序号(可以修改) 必须由小到大排列 (建议:2到6个旅行商)
Tnum=length(StartPoint);%旅行商个数
Dim=size(data,1)-Tnum;%维度
lb=-100;%下界
ub=100;%上界
fobj=@Fun;%计算总距离
SearchAgents_no=100; % 种群大小(可以修改)
Max_iteration=3000; % 最大迭代次数(可以修改)
[fMin,bestX,curve]=KOA(SearchAgents_no,Max_iteration,lb,ub,Dim,fobj);  

3.2部分结果

(1)4个旅行商

第1个旅行商的路径:5->2->29->3->26->12->9->5

第1个旅行商的总路径长度:1156.287162

第2个旅行商的路径:15->13->1->28->6->21->24->15

第2个旅行商的总路径长度:1253.714481

第3个旅行商的路径:16->8->27->23->7->25->19->16

第3个旅行商的总路径长度:1093.069074

第4个旅行商的路径:20->10->18->14->17->22->11->4->20

第4个旅行商的总路径长度:1012.620363

所有旅行商的总路径长度:4515.691080

(2)5个旅行商

第1个旅行商的路径:1->6->9->12->28->1

第1个旅行商的总路径长度:738.241153

第2个旅行商的路径:5->3->29->26->21->5

第2个旅行商的总路径长度:990.353472

第3个旅行商的路径:15->10->4->11->17->15

第3个旅行商的总路径长度:1125.255527

第4个旅行商的路径:16->19->22->14->18->16

第4个旅行商的总路径长度:1217.209924

第5个旅行商的路径:20->25->7->23->27->8->24->2->13->20

第5个旅行商的总路径长度:1567.099231

所有旅行商的总路径长度:5638.159307

四、完整Matlab代码

这篇关于MD-MTSP:开普勒优化算法KOA求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493889

相关文章

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll