MD-MTSP:开普勒优化算法KOA求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)

本文主要是介绍MD-MTSP:开普勒优化算法KOA求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、开普勒优化算法KOA

开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。

参考文献:

[1]Mohamed Abdel-Basset, Reda Mohamed, Shaimaa A. Abdel Azeem, Mohammed Jameel, Mohamed Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion, Knowledge-Based Systems, 2023. DOI: Redirecting

二、多仓库多旅行商问题MD-MTSP

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是著名的旅行商问题(Traveling Salesman Problem, TSP)的延伸,多旅行商问题定义为:给定一个𝑛座城市的城市集合,指定𝑚个推销员,每一位推销员从起点城市出发访问一定数量的城市,最后回到终点城市,要求除起点和终点城市以外,每一座城市都必须至少被一位推销员访问,并且只能访问一次,需要求解出满足上述要求并且代价最小的分配方案,其中的代价通常用总路程长度来代替,当然也可以是时间、费用等。多仓库多旅行商问题是其中一种多旅行商问题。

多旅行商问题(Multiple Traveling Salesman Problem, MTSP):单仓库多旅行商问题及多仓库多旅行商问题(含动态视频)_IT猿手的博客-CSDN博客

多仓库多旅行商问题(Multi-Depot Multiple Travelling Salesman Problem, MD-MTSP):𝑚个推销员从𝑚座不同的城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后回到各自出发的城市,这种问题模型被称之为MD-MTSP。

三、开普勒优化算法KOA求解MD-MTSP

本文选取国际通用的TSP实例库TSPLIB中的测试集bayg29作为测试例子,数据集可以自行修改。

3.1部分代码(可更改起点及旅行商个数)

close all
clear
clc
global data  StartPoint Tnum
%数据集参考文献  REINELT G.TSPLIB-a traveling salesman problem[J].ORSA Journal on Computing,1991,3(4):267-384.
% 导入TSP数据集 bayg29
load('data.txt')
StartPoint=[1 5 15 16 20];%起点城市的序号(可以修改) 必须由小到大排列 (建议:2到6个旅行商)
Tnum=length(StartPoint);%旅行商个数
Dim=size(data,1)-Tnum;%维度
lb=-100;%下界
ub=100;%上界
fobj=@Fun;%计算总距离
SearchAgents_no=100; % 种群大小(可以修改)
Max_iteration=3000; % 最大迭代次数(可以修改)
[fMin,bestX,curve]=KOA(SearchAgents_no,Max_iteration,lb,ub,Dim,fobj);  

3.2部分结果

(1)4个旅行商

第1个旅行商的路径:5->2->29->3->26->12->9->5

第1个旅行商的总路径长度:1156.287162

第2个旅行商的路径:15->13->1->28->6->21->24->15

第2个旅行商的总路径长度:1253.714481

第3个旅行商的路径:16->8->27->23->7->25->19->16

第3个旅行商的总路径长度:1093.069074

第4个旅行商的路径:20->10->18->14->17->22->11->4->20

第4个旅行商的总路径长度:1012.620363

所有旅行商的总路径长度:4515.691080

(2)5个旅行商

第1个旅行商的路径:1->6->9->12->28->1

第1个旅行商的总路径长度:738.241153

第2个旅行商的路径:5->3->29->26->21->5

第2个旅行商的总路径长度:990.353472

第3个旅行商的路径:15->10->4->11->17->15

第3个旅行商的总路径长度:1125.255527

第4个旅行商的路径:16->19->22->14->18->16

第4个旅行商的总路径长度:1217.209924

第5个旅行商的路径:20->25->7->23->27->8->24->2->13->20

第5个旅行商的总路径长度:1567.099231

所有旅行商的总路径长度:5638.159307

四、完整Matlab代码

这篇关于MD-MTSP:开普勒优化算法KOA求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493889

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出