LLM推理部署(六):TogetherAI推出世界上LLM最快推理引擎,性能超过vLLM和TGI三倍

本文主要是介绍LLM推理部署(六):TogetherAI推出世界上LLM最快推理引擎,性能超过vLLM和TGI三倍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLM能有多快?答案在于LLM推理的最新突破。

       TogetherAI声称,他们在CUDA上构建了世界上最快的LLM推理引擎,该引擎运行在NVIDIA Tensor Core GPU上。Together推理引擎可以支持100多个开源大模型,比如Llama-2,并在Llama-2–70B-Chat上每秒生成117个tokens,在Llama2–13B-Chat中每秒生成171个tokens。

文本将从以下几点进行介绍:

  • Together推理引擎技术;
  • 使用Python API进行LLM推理;
  • 与LangChain的集成;
  • 管理聊天历史记录

一、TogetherAI推动LLM推理的极限

       TogetherAI新的LLM推理引擎性能超过vLLM和TGI,如下图所示:

       定价合理,Llama-2–13b Chat不仅比GPT 3.5 Turbo便宜6倍,而且速度快1.85倍。

TogetherAI推理引擎的方法结合了以下三个关键技术:

FlashAttention-2:可以提高LLM的训练和微调速度4倍以上,并在NVIDIA A100s上实现了72%的模型FLOP利用率。这一点很重要,因为传统的注意力计算受内存带宽限制,通常会进行大量内存交换。Flash Attention重组矩阵运算以减少内存交换,使模型速度翻倍或更多;

Flash-Decoding:加快推理过程中的注意力计算,对超长序列,生成速度可以提高8倍。对输入序列中的多个tokens通过重新组织句子计算可以批处理注意力计算。对短Prompt影响很小,但对于较长的序列(例如,10ktokens),性能可能会翻倍;

Medusa:在LLM的最后隐藏状态之上添加多个头来预测下一个token,然后使用模型来验证这个预测的token,推理速度可以提高2倍。

让我们看看TogetherAI在实践中是如何工作的。

二、TogetherAI如何使用

      登录TogetherAI(https://www.together.ai/)并注册即可获得25美元的免费积分。

      TogetherAI提供了使用LLM的各种功能,可以在左侧导航窗格中看到其中的一些功能。

可以在“设置”中找到您的API密钥和帐单信息。

可以在UI上测试不同的功能,但我们真正想要的是通过API访问。

2.1 设置环境

      让我们从设置虚拟环境开始:

mkdir togetherai-serving && cd togetherai-servingpython3 -m venv togetherai-serving-envsource togetherai-serving-env/bin/activatepip3 install ipykernel jupyterpip3 install python-dotenvpip3 install --upgrade togetherpip3 install langchain huggingface_hub# Optionally, fire up VSCode or your favorite IDE and let's get rolling!code .

创建.env文件并添加TogetherAI API密钥:

TOGETHER_API_KEY=<Your API Key>

和导入所需的库:

import osimport timeimport jsonimport loggingfrom datetime import datetimeimport togetherfrom langchain.llms.base import LLMfrom langchain import PromptTemplate,  LLMChainfrom dotenv import load_dotenv # The dotenv library's load_dotenv function reads a .env file to load environment variables into the process environment. This is a common method to handle configuration settings securely.# Load env variablesload_dotenv()# Set up logginglogging.basicConfig(level=logging.INFO)

2.2 了解TogetherAI Python API

我们现在可以查看一下TogetherAI支持的模型,并选择一个来使用:

model_list = together.Models.list()print(f"There are {len(model_list)} models to choose from!")[model['name'] for model in model_list][:20]

总共支持103个模型,下面查看前20个模型

There are 103 models to choose from!['Austism/chronos-hermes-13b','EleutherAI/llemma_7b','EleutherAI/pythia-12b-v0', 'EleutherAI/pythia-1b-v0', 'EleutherAI/pythia-2.8b-v0', 'EleutherAI/pythia-6.9b', 'Gryphe/MythoMax-L2-13b', 'HuggingFaceH4/starchat-alpha', 'NousResearch/Nous-Hermes-13b', 'NousResearch/Nous-Hermes-Llama2-13b', 'NousResearch/Nous-Hermes-Llama2-70b', 'NousResearch/Nous-Hermes-llama-2-7b', 'NumbersStation/nsql-llama-2-7B', 'Open-Orca/Mistral-7B-OpenOrca', 'OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5', 'OpenAssistant/stablelm-7b-sft-v7-epoch-3', 'Phind/Phind-CodeLlama-34B-Python-v1', 'Phind/Phind-CodeLlama-34B-v2', 'SG161222/Realistic_Vision_V3.0_VAE', 'WizardLM/WizardCoder-15B-V1.0']

让我们使用“togethercomputer/lama-2–7b chat”来生成一个回复:

prompt = "<human>: What do you think about Large Language Models?\n<bot>:"model = "togethercomputer/llama-2-7b-chat"output = together.Complete.create(  prompt = prompt,  model = model,   max_tokens = 256,  temperature = 0.8,  top_k = 60,  top_p = 0.6,  repetition_penalty = 1.1,  stop = ['<human>', '\n\n'])print(json.dumps(output, indent = 4))

花了2秒才得到完整的答案,以下是输出:

{    "id": "8268eed93d23b903-AMS",    "status": "finished",    "prompt": [        "<human>: What do you think about Large Language Models?\n<bot>:"    ],    "model": "togethercomputer/llama-2-7b-chat",    "model_owner": "",    "tags": {},    "num_returns": 1,    "args": {        "model": "togethercomputer/llama-2-7b-chat",        "prompt": "<human>: What do you think about Large Language Models?\n<bot>:",        "top_p": 0.6,        "top_k": 60,        "temperature": 0.8,        "max_tokens": 256,        "stop": [            "<human>",            "\n\n"        ],        "repetition_penalty": 1.1,        "logprobs": null    },    "subjobs": [],    "output": {        "result_type": "language-model-inference",        "choices": [            {                "text": "Large language models, such as transformer-based models like BERT and RoBERTa, have been instrumental in achieving state-of-the-art results in a wide range of natural language processing (NLP) tasks. These models are trained on large amounts of text data and have the ability to learn complex patterns and relationships in language.\n\n"            }        ]    }}

以下是如何获得生成的响应:

print(output['output']['choices'][0]['text'])# Large language models, such as transformer-based models like BERT and # RoBERTa, have been instrumental in achieving state-of-the-art results # in a wide range of natural language processing (NLP) tasks. These models # are trained on large amounts of text data and have the ability to learn # complex patterns and relationships in language.

还可以使用流:

for token in together.Complete.create_streaming(prompt=prompt):    print(token, end="", flush=True)

现在,我们来看看LangChain集成。

三、TogetherAI与LangChain的集成

       为了在LangChain中使用TogetherAI,我们必须扩展基本LLM抽象类。

这里有一个创建自定义LLM包装器的示例代码(https://python.langchain.com/docs/modules/model_io/llms/custom_llm),但我们将通过类型验证、异常处理和日志记录使其变得更好。

class TogetherLLM(LLM):    """    Together LLM integration.    Attributes:        model (str): Model endpoint to use.        together_api_key (str): Together API key.        temperature (float): Sampling temperature to use.        max_tokens (int): Maximum number of tokens to generate.    """        model: str = "togethercomputer/llama-2-7b-chat"    together_api_key: str = os.environ["TOGETHER_API_KEY"]    temperature: float = 0.7    max_tokens: int = 512    @property    def _llm_type(self) -> str:        """Return type of LLM."""        return "together"    def _call(self, prompt: str, **kwargs: Any) -> str:            """Call to Together endpoint."""            try:                logging.info("Making API call to Together endpoint.")                return self._make_api_call(prompt)            except Exception as e:                logging.error(f"Error in TogetherLLM _call: {e}", exc_info=True)                raise    def _make_api_call(self, prompt: str) -> str:        """Make the API call to the Together endpoint."""        together.api_key = self.together_api_key        output = together.Complete.create(            prompt,            model=self.model,            max_tokens=self.max_tokens,            temperature=self.temperature,        )        logging.info("API call successful.")        return output['output']['choices'][0]['text']

       langchain.lms.base模块通过提供比直接实现_generate方法用户更友好的界面来简化与LLM的交互。

       类langchain.lms.base.LLM是LLM的一个抽象基类,这意味着它为其他类提供了一个模板,但并不意味着它自己被实例化。它旨在通过在内部处理LLM的复杂性,为LLM的工作提供一个更简单的界面,允许用户更容易地与这些模型交互。

       __call__方法允许像函数一样调用类,它检查缓存并在给定提示下运行LLM。

我们现在可以创建TogetherLLM的类实例:

llm = TogetherLLM(    model = model,    max_tokens = 256,    temperature = 0.8)

然后创建LLM链:

prompt_template = "You are a friendly bot, answer the following question: {question}"prompt = PromptTemplate(    input_variables=["question"], template=prompt_template)chat = LLMChain(llm=llm, prompt=prompt)

让我们开始对话:

chat("Can AI take over developer jobs?")
INFO:root:Making API call to Together endpoint.INFO:root:API call successful.{'question': 'Can AI take over developer jobs?', 'text': '\n\nNo, AI will not take over developer jobs. AI can assist developers in various ways, such as automating repetitive tasks, generating code, or analyzing data, but it will not replace human developers. Developers are needed to design, build, and maintain complex software systems, which require creativity, critical thinking, and problem-solving skills that AI systems do not possess. Additionally, the field of software development is constantly evolving, and new technologies and techniques are constantly being developed, which requires developers to stay up-to-date and adapt to new challenges.'}

让我们看看还能做些什么。

四、管理聊天历史记录

       单轮聊天是可以,但这是一个聊天模型,我们来学习一下如何管理聊天历史,以实现更连贯和上下文感知的互动。

       以下是LangChain文档中的一个简单图表,显示了流程:

       然而,不想使用LangChain的抽象,而是想重新实现LLMChain类,让用户更好地debug代码。

from typing import Listclass LLMChain:    def __init__(self, llm, prompt):        self.llm = llm        self.prompt = prompt        self.history: List[str] = []  # Initialize an empty list to keep track of the conversation history    def add_to_history(self, user_input: str, bot_response: str):        self.history.append(f"<human>: {user_input}")        self.history.append(f"<bot>: {bot_response}")    def generate_prompt(self, question: str) -> str:        history_str = "\n".join(self.history)  # Convert the history list into a single string        return f"{history_str}\n<human>: {question}\n<bot>:"    def ask(self, question: str) -> str:        full_prompt = self.generate_prompt(question)        response = self.llm._call(full_prompt)  # Assuming _call method handles the actual API call        self.add_to_history(question, response)        return response

       在这个实现中,我们每次调用ask方法时,会话历史都会更新为最新的交换。generate_prompt方法构造一个包含此历史记录的新Prompt来维护会话的上下文。

       通过以下实例看一些如何使用

# Usagellm = TogetherLLM(    model = model,    max_tokens = 256,    temperature = 0.8)prompt_template = "You are a friendly bot, answer the following question: {question}"prompt = PromptTemplate(    input_variables=["question"], template=prompt_template)chat = LLMChain(llm=llm, prompt=prompt)# Example interactionresponse = chat.ask("What is the weather like today?")print(response)  # Bot's response# The next call to chat.ask will include the previous interaction in the promptresponse = chat.ask("How can I enjoy such a weather?")print(response)

       你可能已经注意到,随着聊天历史的增长,很难管理模型的上下文窗口,有几种策略可以处理它,后面会继续分享,敬请期待。

参考文献:

[1] https://medium.com/@datadrifters/the-worlds-fastest-llm-inference-engine-3x-faster-than-vllm-and-tgi-a2ed9e33c55f?source=email-c63e4493b83d-1702407845871-digest.reader--a2ed9e33c55f----2-98------------------775b79bd_d6f0_4703_a101_7e17ca89ae00-1

[2] https://www.together.ai/blog/together-inference-engine-v1

这篇关于LLM推理部署(六):TogetherAI推出世界上LLM最快推理引擎,性能超过vLLM和TGI三倍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489411

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指