大数据入门第十三天——离线综合案例:网站点击流数据分析

本文主要是介绍大数据入门第十三天——离线综合案例:网站点击流数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

推荐书籍:《网站分析实战——如何以数据驱动决策,提升网站价值》

相关随笔:http://blog.csdn.net/u014033218/article/details/76847263

一、网站点击流数据分析项目业务背景

  1.什么是点击流数据

    1.web访问日志

即指用户访问网站时的所有访问、浏览、点击行为数据。比如点击了哪一个链接,在哪个网页停留时间最多,采用了哪个搜索项、总体浏览时间等。
而所有这些信息都可被保存在网站日志中。通过分析这些数据,可以获知许多对网站运营至关重要的信息。采集的数据越全面,分析就能越精准。日志的生成渠道:
1)是网站的web服务器所记录的web访问日志; 2)是通过在页面嵌入自定义的js代码来获取用户的所有访问行为(比如鼠标悬停的位置,点击的页面组件等),
  然后通过ajax请求到后台记录日志;这种方式所能采集的信息最全面;
3)通过在页面上埋点1像素的图片,将相关页面访问信息请求到后台记录日志;日志数据内容详述: 在实际操作中,有以下几个方面的数据可以被采集: 1)访客的系统属性特征。比如所采用的操作系统、浏览器、域名和访问速度等。 2)访问特征。包括停留时间、点击的URL等。 3)来源特征。包括网络内容信息类型、内容分类和来访URL等。 产品特征。包括所访问的产品编号、产品类别、产品颜色、产品价格、产品利润、

  日志示例:

GET /log.gif?t=item.010001&m=UA-J2011-1&pin=-&uid=1679790178&sid=1679790178|12&v=je=1$sc=24-bit$sr=1600x900$ul=zh-cn$cs=GBK$dt=【云南白药套装】云南白药 牙膏 180g×3 (留兰香型)【行情 报价 价格 评测】-京东$hn=item.jd.com$fl=16.0 r0$os=win$br=chrome$bv=39.0.2171.95$wb=1437269412$xb=1449548587$yb=1456186252$zb=12$cb=4$usc=direct$ucp=-$umd=none$uct=-$ct=1456186505411$lt=0$tad=-$sku=1326523$cid1=1316$cid2=1384$cid3=1405$brand=20583$pinid=-&ref=&rm=1456186505411 HTTP/1.1

    2.点击流数据模型

  点击流概念

  点击流这个概念更注重用户浏览网站的整个流程,网站日志中记录的用户点击就像是图上的“点”,而点击流更像是将这些“点”串起来形成的“线”。也可以把“点”认为是网站的Page,而“线”则是访问网站的Session。所以点击流数据是由网站日志中整理得到的,它可以比网站日志包含更多的信息,从而使基于点击流数据统计得到的结果更加丰富和高效

  点击流模型生成

  点击流数据在具体操作上是由散点状的点击日志数据梳理所得,从而,点击数据在数据建模时应该存在两张模型表(Pageviews和visits):

  

  

  2.点击流数据分析意义

    参见文首链接

   3.流量分析常见指标 

    1)基础分析PV,IP,UV
    2)来源分析
    3)受访分析
    4)访客分析
    5)转化路径分析

   //完整指标参考文首链接

 二、整体技术流程及架构

  1.处理流程   

  该项目是一个纯粹的数据分析项目,其整体流程基本上就是依据数据的处理流程进行,依此有以下几个大的步骤:

  1) 数据采集

    首先,通过页面嵌入JS代码的方式获取用户访问行为,并发送到web服务的后台记录日志

    然后,将各服务器上生成的点击流日志通过实时或批量的方式汇聚到HDFS文件系统中

    当然,一个综合分析系统,数据源可能不仅包含点击流数据,还有数据库中的业务数据(如用户信息、商品信息、订单信息等)及对分析有益的外部数据

  2) 数据预处理

    通过mapreduce程序对采集到的点击流数据进行预处理,比如清洗,格式整理,滤除脏数据等

  3) 数据入库

    将预处理之后的数据导入到HIVE仓库中相应的库和表中

  4) 数据分析

    项目的核心内容,即根据需求开发ETL分析语句,得出各种统计结果

  5) 数据展现

    将分析所得数据进行可视化

  2.项目结构

    

 三、模块开发——数据采集

  数据采集的需求广义上来说分为两大部分。

  1)是在页面采集用户的访问行为,具体开发工作:

    1、开发页面埋点js,采集用户访问行为

    2、后台接受页面js请求记录日志

    此部分工作也可以归属为“数据源”,其开发工作通常由web开发团队负责

  2)是从web服务器上汇聚日志到HDFS,是数据分析系统的数据采集,此部分工作由数据分析平台建设团队负责,具体的技术实现有很多方式:

  ² Shell脚本

    优点:轻量级,开发简单

    缺点:对日志采集过程中的容错处理不便控制

  ² Java采集程序

    优点:可对采集过程实现精细控制

    缺点:开发工作量大

  ² Flume日志采集框架

    成熟的开源日志采集系统,且本身就是hadoop生态体系中的一员,与hadoop体系中的各种框架组件具有天生的亲和力,可扩展性强

  数据采集技术选型

    flume

    采集规则:

agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1# Describe/configure spooldir source1
#agent1.sources.source1.type = spooldir
#agent1.sources.source1.spoolDir = /var/logs/nginx/
#agent1.sources.source1.fileHeader = false# Describe/configure tail -F source1
#使用exec作为数据源source组件
agent1.sources.source1.type = exec 
#使用tail -F命令实时收集新产生的日志数据
agent1.sources.source1.command = tail -F /var/logs/nginx/access_log
agent1.sources.source1.channels = channel1#configure host for source
#配置一个拦截器插件
agent1.sources.source1.interceptors = i1
agent1.sources.source1.interceptors.i1.type = host
#使用拦截器插件获取agent所在服务器的主机名
agent1.sources.source1.interceptors.i1.hostHeader = hostname#配置sink组件为hdfs
agent1.sinks.sink1.type = hdfs
#a1.sinks.k1.channel = c1
#agent1.sinks.sink1.hdfs.path=hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H%M%S
#指定文件sink到hdfs上的路径
agent1.sinks.sink1.hdfs.path=
hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M_%hostname
#指定文件名前缀
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000 
#指定每批下沉数据的记录条数
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
#指定下沉文件按1G大小滚动
agent1.sinks.sink1.hdfs.rollSize = 1024*1024*1024
#指定下沉文件按1000000条数滚动
agent1.sinks.sink1.hdfs.rollCount = 1000000
#指定下沉文件按30分钟滚动
agent1.sinks.sink1.hdfs.rollInterval = 30
#agent1.sinks.sink1.hdfs.round = true
#agent1.sinks.sink1.hdfs.roundValue = 10
#agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true# Use a channel which buffers events in memory
#使用memory类型channel
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1

  //实际进行适当调整

  调整启动命令,启动即可:

在部署了flume的nginx服务器上,启动flume的agent,命令如下:
bin/flume-ng agent --conf ./conf -f ./conf/weblog.properties.2 -n agent

  //正确匹配配置文件名称与agent名称等.

四、模块开发之数据预处理

  过滤“不合规”数据

  格式转换和规整

  根据后续的统计需求,过滤分离出各种不同主题(不同栏目path)的基础数据

  核心mapreduce代码:

package cn.itcast.bigdata.hive.mr.pre;import java.io.IOException;
import java.util.HashSet;
import java.util.Set;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import cn.itcast.bigdata.hive.mrbean.WebLogBean;
import cn.itcast.bigdata.hive.mrbean.WebLogParser;/*** 处理原始日志,过滤出真实pv请求* 转换时间格式* 对缺失字段填充默认值* 对记录标记valid和invalid* * @author**/public class WeblogPreProcess {static class WeblogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> {//用来存储网站url分类数据Set<String> pages = new HashSet<String>();Text k = new Text();NullWritable v = NullWritable.get();/*** 从外部加载网站url分类数据*/@Overrideprotected void setup(Context context) throws IOException, InterruptedException {pages.add("/about");pages.add("/black-ip-list/");pages.add("/cassandra-clustor/");pages.add("/finance-rhive-repurchase/");pages.add("/hadoop-family-roadmap/");pages.add("/hadoop-hive-intro/");pages.add("/hadoop-zookeeper-intro/");pages.add("/hadoop-mahout-roadmap/");}@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String line = value.toString();WebLogBean webLogBean = WebLogParser.parser(line);// 过滤js/图片/css等静态资源
            WebLogParser.filtStaticResource(webLogBean, pages);/* if (!webLogBean.isValid()) return; */k.set(webLogBean.toString());context.write(k, v);}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(WeblogPreProcess.class);job.setMapperClass(WeblogPreProcessMapper.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);//         FileInputFormat.setInputPaths(job, new Path(args[0]));
//         FileOutputFormat.setOutputPath(job, new Path(args[1]));FileInputFormat.setInputPaths(job, new Path("c:/weblog/input"));FileOutputFormat.setOutputPath(job, new Path("c:/weblog/output"));job.setNumReduceTasks(0);job.waitForCompletion(true);}}
WeblogPreProcess

   运行mr进行过滤处理:

hadoop jar weblog.jar  cn.itcast.bigdata.hive.mr.WeblogPreProcess /weblog/input /weblog/preout

   ###剩余模块,待补充,暂时参考文首博文

转载于:https://www.cnblogs.com/jiangbei/p/8480752.html

这篇关于大数据入门第十三天——离线综合案例:网站点击流数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/486030

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处