3步排查,3步优化,探针性能损耗直降44%

2023-12-12 07:38

本文主要是介绍3步排查,3步优化,探针性能损耗直降44%,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

应用接探针除了安全问题,最担心的就是占用系统性能影响业务正常运转,今天分享一个实际案例告诉大家如何来降低探针的性能损耗。
下表为某用户的2条核心链路在200并发压测下的性能数据对比,可以看见在接入探针后性能损耗居高不下。
在这里插入图片描述

3步快速排查

1.对比链路差异

首先想到的排查方案是通过skywalking监控进行排查,对比应用在接入探针和未接入探针的情况下,性能表现的差异在哪,具体的的性能消耗在哪个中间件。
在对比skywalking监控的链路耗时,确实可以观察到未接入探针比接入探针和链路的RT高,但是不清楚是否存在客户环境问题或者skywallking上的链路有断裂的问题,信息并不全面无法准确定位。
在这里插入图片描述
在这里插入图片描述

2.插件排除法

在无其它有效信息时,尝试通过排除法定位具体影响性能的插件。具体做法是先整理链路用到的中间件,先移除所有中间件插件,再逐一增加单个中间件插件,不断的进行压测,观察哪个插件对性能的影响比较大。依靠这个方法定位成功到dubbo与logback两个插件,它们对性能影响比较大。
在这里插入图片描述

3.性能数据收集

在压测测试的同时,我们在agent框架内增加了对中间件插件interceptor方法执行的耗时统计代码,这部分数据会统一输出到固定的日志文件中。此外我们开发了与之配套的性能日志分析程序,配合日志收集脚本,可以对整个链路的所有应用打印的性能数据进行分析,输出汇总出一份中间件interceptor的统计结果,这份结果可以直观的看到每个中间件的性能耗时占比。
统计结果样例:
在这里插入图片描述

性能收集代码展示:
在这里插入图片描述

3步具体优化

1.减少切点

agent产生性能损耗的终归原因是因为agent增强中间件代码后,会修改目标类的字节码,植入一些额外的逻辑,正是这些额外的逻辑带来了额外的耗时。切点越多植入的逻辑越多,整个链路的损耗就可能越高,所以尽可能的减少切点的数量一定会减少性能损耗。
按照这个思路,我们将前面排查出来耗时占比较高的logback中间件进行了重新设计。原先logback的实现有三个切点,分别负责:影子appender的注册、流量标识、日志隔离,经过重新设计后,优化为一个切点实现所有功能。

2.静默&业务流量过滤

尽管中间件插件的增强逻辑不尽相同,但agent在植入到目标类的字节码都是统一的。他们都有统一入口,前置的运行逻辑都是同一套框架,实际运行时序图如下:
在这里插入图片描述

实际上有很多Interceptor的增强逻辑只有压测流量时才会执行,可这部分interceptor的执行全部需要经过前面从Messager到AdviceListener的一系列调用,这是完全没有必要并且会带来一定的性能损耗。这种无用调用可以在最前端做个判断,从开始就过滤掉,在达到效果的同时降低性能损耗。
在这里插入图片描述

为此我们对框架进行了改造,让类似这种interceptor能在最前端就把流量过滤掉,避免执行无意义的逻辑。同时在最前端增加了静默开关,静默开关可以一键禁用掉所有中间件增强逻辑的执行,一定程度上可以代替卸载操作。相比卸载来说它不会还原实际的字节码,也不会回收内存占用,但是会更加轻量级,响应更快,影响更小。
改造后的运行时序图:
在这里插入图片描述

3.中断逻辑优化

对logback插件进行重新设计后产生了一定效果,但是从性能采集的数据来看,性能损耗占比最高的还是logback插件。经过反复斟酌发现logback本身已经没有在进一步优化的空间了,于是将目光转向了框架层面,最后将重点放在了优化CutoffInterceptor类型中断机制。
CutoffInterceptor是一个类似挡板的Interceptor,它可以中断源码本身的运行,并且支持对返回值替换。比如数据库隔离的实现,我们一般会实现一个CutoffInterceptor,在压测流量经过时返回影子数据库的connection代替业务connection,以实现数据的隔离。logback同样也是实现了一个CutoffInterceptor,在压测流量经过时返回影子的appender替换业务的appender实现日志隔离。
CutoffInterceptor内部的实现原理是通过异常机制实现的,在替换返回值时,实际上是抛出了一个异常由上层捕获,实现对源代码的中断。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

众所周知,在java中通过抛出实现流程控制的效率其实是比较低的,我们内部测试验证也证实了这点,一个空逻辑的CutoffInterceptor和同样的一个空逻辑Interceptor的性能差距相差几十近百倍。恰好logback这种日志类型的中间件执行频率是非常高的,所以导致这块的性能损耗一直下不去。于是我们把CutoffInterceptor的中断机制进行了优化,抛出异常改为了先advice设置中断标记,再由上层判断去控制中断。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最终结果

经过一系列的优化动作之后,两条核心链路的性能损耗都有了大幅度的提升,链路A性能损耗由48%下降至4%,链路B的性能损耗由35%下降至3.4%。

在这里插入图片描述

这篇关于3步排查,3步优化,探针性能损耗直降44%的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483789

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决