【OpenCV】82 角点检测—shi-tomas角点检测

2023-12-12 04:50
文章标签 opencv 检测 角点 shi 82 tomas

本文主要是介绍【OpenCV】82 角点检测—shi-tomas角点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

82 角点检测—shi-tomas角点检测

代码

import numpy as np
import cv2 as cvdef process(image, opt=1):# Detecting cornersgray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)corners = cv.goodFeaturesToTrack(gray, 100, 0.05, 10)print(len(corners))for pt in corners:print(pt)b = np.random.random_integers(0, 256)g = np.random.random_integers(0, 256)r = np.random.random_integers(0, 256)x = np.int32(pt[0][0])y = np.int32(pt[0][1])cv.circle(image, (x, y), 5, (int(b), int(g), int(r)), 2)# outputreturn imagesrc = cv.imread("../images/box.bmp")
cv.imshow("input", src)
result = process(src)
cv.imshow('result', result)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果

在这里插入图片描述

解释

Harris角点检测是一种计算速度很慢的角点检测算法,很难实时计算,所有最常用的是shi-tomas角点检测算法,它的运行速度很快。
OpenCV中相关API与解释如下:

corners = cv.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]])
  • image单通道输入图像,八位或者浮点数
  • maxCorners表示最大返回关键点数目
  • qualityLevel表示拒绝的关键点 R < qualityLevel × max response将会被直接丢弃
  • minDistance 表示两个关键点之间的最短距离
  • corners是输出的关键点坐标集合
  • mask 表示mask区域,如果有表明只对mask区域做计算
  • blockSize 计算梯度与微分的窗口区域
  • useHarrisDetector 表示是否使用harris角点检测,默认是false 为shi-tomas
  • k = 0.04默认值,当useHarrisDetector为ture时候起作用

所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

这篇关于【OpenCV】82 角点检测—shi-tomas角点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483288

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性