Python轴承故障诊断 (五)基于EMD-LSTM的故障分类

2023-12-11 03:53

本文主要是介绍Python轴承故障诊断 (五)基于EMD-LSTM的故障分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

1 经验模态分解EMD的Python示例

2 轴承故障数据的预处理

2.1 导入数据

2.2 制作数据集和对应标签

2.3 故障数据的EMD分解可视化

2.4 故障数据的EMD分解预处理

3 基于EMD-LSTM的轴承故障诊断分类

3.1 训练数据、测试数据分组,数据分batch

3.2 定义EMD-LSTM分类网络模型

3.3 设置参数,训练模型


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT

Python轴承故障诊断 (三)经验模态分解EMD

Python轴承故障诊断 (四)基于EMD-CNN的故障分类

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行经验模态分解EMD的介绍与数据预处理,最后通过Python实现EMD-LSTM对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

经验模态分解EMD的原理可以参考如下:   

Python轴承故障诊断 (三)经验模态分解EMD

1 经验模态分解EMD的Python示例

第一步,Python 中 EMD包的下载安装:

# 下载
pip install EMD-signal# 导入
from PyEMD import EMD

切记,很多同学安装失败,不是 pip install EMD,也不是pip install PyEMD, 如果 pip list 中 已经有 emd,emd-signal,pyemd包的存在,要先 pip uninstall 移除相关包,然后再进行安装。

第二步,导入相关包

importnumpyasnp
from PyEMD import EMD
importmatplotlib.pyplotasplt
importmatplotlib
matplotlib.rc("font", family='Microsoft YaHei')

第三步,生成一个信号示例

t = np.linspace(0, 1, 1000)
signal = np.sin(11*2*np.pi*t*t) + 6*t*t

第四步,创建EMD对象,进行分解

emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(signal)

第五步,绘制原始信号和每个本征模态函数(IMF)

plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, signal, 'r')
plt.title("原始信号")fornum, imfinenumerate(IMFs):plt.subplot(len(IMFs)+1, 1, num+2)plt.plot(t, imf)plt.title("IMF "+str(num+1))plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 制作数据集和对应标签

第一步, 生成数据集

第二步,制作数据集和标签

# 制作数据集和标签
import torch# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。def make_data_labels(dataframe):'''参数 dataframe: 数据框返回 x_data: 数据集     torch.tensory_label: 对应标签值  torch.tensor'''# 信号值x_data = dataframe.iloc[:,0:-1]# 标签值y_label = dataframe.iloc[:,-1]x_data = torch.tensor(x_data.values).float()y_label = torch.tensor(y_label.values, dtype=torch.int64)  # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签return x_data, y_label# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

2.3 故障数据的EMD分解可视化

选择正常信号和 0.021英寸内圈、滚珠、外圈故障信号数据来做对比

第一步,导入包,读取数据

import numpy as np
from scipy.io import loadmat
import numpy as np
from scipy.signal import stft
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')# 读取MAT文件  
data1 = loadmat('0_0.mat')  # 正常信号
data2 = loadmat('21_1.mat') # 0.021英寸 内圈
data3 = loadmat('21_2.mat') # 0.021英寸 滚珠
data4 = loadmat('21_3.mat') # 0.021英寸 外圈
# 注意,读取出来的data是字典格式,可以通过函数type(data)查看。

第二步,数据集中统一读取 驱动端加速度数据,取一个长度为1024的信号进行后续观察和实验

# DE - drive end accelerometer data 驱动端加速度数据
data_list1 = data1['X097_DE_time'].reshape(-1)
data_list2 = data2['X209_DE_time'].reshape(-1)  
data_list3 = data3['X222_DE_time'].reshape(-1)
data_list4 = data4['X234_DE_time'].reshape(-1)
# 划窗取值(大多数窗口大小为1024)
time_step= 1024
data_list1 = data_list1[0:time_step]
data_list2 = data_list2[0:time_step]
data_list3 = data_list3[0:time_step]
data_list4 = data_list4[0:time_step]

第三步,进行数据可视化

plt.figure(figsize=(20,10))
plt.subplot(2,2,1)
plt.plot(data_list1)
plt.title('正常')
plt.subplot(2,2,2)
plt.plot(data_list2)
plt.title('内圈')
plt.subplot(2,2,3)
plt.plot(data_list3)
plt.title('滚珠')
plt.subplot(2,2,4)
plt.plot(data_list4)
plt.title('外圈')
plt.show()

第四步,首先对正常数据进行EMD分解

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMDt = np.linspace(0, 1, time_step)
data = np.array(data_list1)
# 创建 EMD 对象
emd = EMD()# 对信号进行经验模态分解
IMFs = emd(data)# 绘制原始信号和每个本征模态函数(IMF)
plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, data, 'r')
plt.title("Original signal", fontsize=10)for num, imf in enumerate(IMFs):plt.subplot(len(IMFs)+1, 1, num+2)plt.plot(t, imf)plt.title("IMF "+str(num+1), fontsize=10)# 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.4, wspace=0.2)
plt.show()

其次,内圈故障EMD分解:

然后,滚珠故障EMD分解:

最后,外圈故障EMD分解:

注意,在信号的制作过程中,信号长度的选取比较重要,选择信号长度为1024,既能满足信号在时间维度上的分辨率,也能在后续的EMD分解中分解出数量相近的IMF分量,为进一步做故障模式识别打下基础。

2.4 故障数据的EMD分解预处理

对于EMD分解出的IMF分量个数,并不是所有的样本信号都能分解出8个分量,需要做一下定量分析:

import numpy as np
from PyEMD import EMD# 加载训练集
train_xdata = load('trainX_1024_10c')
data = np.array(train_xdata)# 创建 EMD 对象
emd = EMD()print("测试集:", len(data))
count_min = 0
count_max = 0
count_7 = 0
# 对数据进行EMD分解
for i in range(1631):imfs = emd(data[i], max_imf=8)  # max_imf=8if len(imfs) > 8 :count_max += 1elif len(imfs) < 7:count_min += 1elif len(imfs) == 7:count_7 += 1print("分解结果IMF大于8:", count_max)
print("分解结果IMF小于7:", count_min)
print("分解结果IMF等于7:", count_7)

由结果可以看出,大部分信号样本 都分解出8个分量,将近1/3的信号分解的不是8个分量。EMD设置不了分解出模态分量的数量(函数自适应),为了使一维信号分解,达到相同维度的分量特征,有如下3种处理方式:

  • 删除分解分量不统一的样本(少量存在情况可以采用);

  • 对于分量个数少的样本采用0值或者其他方法进行特征填充,使其对齐其他样本分量的维度(向多兼容);

  • 合并分量数量多的信号(向少兼容);

本文采用第二、三条结合的方式进行预处理,即删除分量小于7的样本,对于分量大于7的样本,把多余的分量进行合并,使所有信号的分量特征保持同样的维度。

3 基于EMD-LSTM的轴承故障诊断分类

下面基于EMD分解后的轴承故障数据,通过LSTM实现信号的分类方法进行讲解:

3.1 训练数据、测试数据分组,数据分batch

import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载数据集
def dataloader(batch_size, workers=2):# 训练集train_xdata = load('trainX_1024_10c')train_ylabel = load('trainY_1024_10c')# 验证集val_xdata = load('valX_1024_10c')val_ylabel = load('valY_1024_10c')# 测试集test_xdata = load('testX_1024_10c')test_ylabel = load('testY_1024_10c')# 加载数据train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)return train_loader, val_loader, test_loaderbatch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

3.2 定义EMD-LSTM分类网络模型

3.3 设置参数,训练模型

200个epoch,准确率将近86%,用LSTM网络分类效果一般,继续调参可以进一步提高分类准确率。

这篇关于Python轴承故障诊断 (五)基于EMD-LSTM的故障分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479366

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核