分析阿里巴巴的微服务依赖图和性能

2023-12-09 09:28

本文主要是介绍分析阿里巴巴的微服务依赖图和性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文对阿里巴巴集群中部署的大规模微服务进行了全面的研究。他们分析了 7 天内 20,000 多个微服务的行为,并根据收集的 100 亿条调用跟踪来分析它们的特征。该论文获得SOCC 2021最佳论文奖。

他们发现:

  • 微服务图在运行时是动态的

  • 大多数图形像树一样分散生长

  • 调用图的大小遵循重尾分布

根据他们的发现,他们提供了一些有关提高微服务运行时性能的实用技巧。他们还开发了一个随机模型来模拟微服务调用图依赖关系,并表明它近似于他们收集的数据集(可在https://github.com/alibaba/clusterdata获取)。

一个微服务运行在多个容器上。对前端微服务的调用会触发对其他微服务的调用,依此类推。在生成的调用图中,每条边将上游微服务 (UM) 连接到它调用的下游微服务 (DM)。呼叫的响应时间 (RT) 是 UM 呼叫其 DM 到收到响应之间的时间。

阿里巴巴集群使用Kubernetes来管理裸机。在线服务(例如微服务)和离线批处理作业共存于同一个裸机节点中,以提高资源利用率。有状态服务(即数据库和Memcached)部署在专用集群中。

微服务调用图的大小遵循重尾分布。大约 10% 的调用图由 40 多个微服务阶段组成。最大的调用图甚至可以包含数百到数千个微服务。对于包含超过 40 个微服务的调用图,其微服务中大约 50% 是 Memcached(MC)。

发现:

  • 调用图变得更深,查询的缓存未命中率迅速增加。当数据在缓存中未命中时,查询将发送到数据库服务。
  • 超过10%的微服务对的乘积>=5,这意味着阿里巴巴集群中很多微服务对具有很强的耦合依赖关系。
  • 微服务调用率与 CPU 利用率和 Java 年轻代垃圾回收 (Young GC) 高度相关,但与内存利用率无关。这意味着与内存利用率相比,CPU 利用率和 Young GC 是微服务容器资源压力更好的指标。阿里巴巴微服务轨迹中大多数容器的内存利用率在运行时几乎稳定(方差小于 10%)。
  • 由于主机 CPU 利用率较高,响应时间 (RT) 可能会大大缩短。当主机CPU利用率超过40%(或80%)时,微服务的RT平均下降20%(或30%)以上。
  • 这些结果表明,大多数在线微服务对 CPU 干扰很敏感,强烈需要更高效的资源调度器,能够很好地平衡不同主机之间的 CPU 利用率。
  • 跟踪显示,每分钟跨主机的 CPU 利用率差异可能高达 20%,这意味着有机会更好地平衡跨主机的批处理工作负载。

https://www.jdon.com/70550.html

这篇关于分析阿里巴巴的微服务依赖图和性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/473277

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,