一文读懂TTC碰撞时间算法

2023-12-08 21:20

本文主要是介绍一文读懂TTC碰撞时间算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在当今的自动驾驶车上,需要更先进和复杂的驾驶辅助系统。大多数车通过一个前向摄像头来实现如LDW(lane departure warning)、TSR(traffic sign recognition)、FCW(forward collision warning)等功能。由于应用环境的复杂性,FCW是一个相当具有挑战的任务,一种鲁邦、可靠的ttc估计方法将显得尤为重要。

TTC为自车与前车发生碰撞的时间,定义为自车与障碍物之间的距离除以相对速度。在单目系统中,测距和测速并不是一个简单的任务。而基于单目视觉的TTC估计是在不需要计算实际距离和速度的前提下,算得自车与前车的碰撞时间

TTC计算理论

在视频流中,在一个短暂的时间内,TTC可以通过目标的尺寸除以尺寸变化来计算。证明如下:

令Z为自车与目标的物理距离,\bigtriangleup X为目标物理宽度,D=x2-x1为目标在图像上的像素宽度。

根据相机投影模型 x=Xf/Z可得,

x1=X_1f/Z,         x2=X_2f/Z

目标实际的物理宽度有

\Delta X=X_1-X_2=(x1-x2)*Z/f=D*Z/f

由于在实际的物理环境中,目标的物理宽度是不变的,对物理宽度求导可得:

但是在实际应用场景,相对速度是实时变化的,那么图像中目标的尺寸D和尺寸变化率也是实时变化的,那么,准确地计算出目标的尺寸和尺寸变化率并不是一件容易的事情。为鲁邦、可靠的估算TTC,仅靠上述公式,算得的ttc是不稳定的。

《Time To Contact Estimation Using Interest Points》提供了一种简单、稳定的TTC估算方法。以下内容将围绕该文章介绍TTC的估算方式。

Time To Contact Estimation Using Interest Points

该方法的主要思想:

  • 利用目标关键点估计目标的尺寸变化S;
  • 然后利用S建立目标的匀速运动模型和加速运动模型;
  • 用扩展Kalman滤波跟踪模型参数;
  • 采用策略融合多种运动模型的计算结果。

在实际应用中,本人认为采用匀加速模型(CA)和匀速模型(CV)即可。

运动模型建立

利用相似三角形原理,可得:

w(t)=f*W/d_\theta (t),其中,d_\theta (t)为带参数的运动模型。

那么,在不同时刻,我们有:

\frac{w(t_1) }{w(t_2)}=\frac{d_\theta(t_2)}{d_\theta(t_1)}

t_1=0, t_2=-\bigtriangleup t, s_i=\frac{w(0)}{w(-\bigtriangleup t_i)}。假定已测得若干组s,

则有

假定运动模型为:

其中,

利用最小二乘拟合该2阶曲线,即可求得\tilde{a}\tilde{v}

计算尺寸变化S

\vec{x_i}^{'}\vec{x_i}为不同帧中的对应点(该对应点可通过关键点匹配或者LK光流算得,对于关键点计算,在本文中不做讨论。欢迎评论或者留言)。采用放射变换计算s。

利用最小二乘算法,可求得:

{\hat{s}}是s的有偏估计,目标尺寸w越小,估计误差越大。

多模型跟踪

采用扩展卡尔曼模型跟踪运动模型的参数,运动模型为CA模型和CV模型。再进行多模型的融合决策,得出最终的TTC。

(该论文中,作者没有采用IMM Kalman (Interactive Multi model kalman filter algorithm)对多个模型进行融合。)

(对于Kalman、扩展Kalman、IMM等模型,将在后续文章中更新,欢迎关注、评论和留言)

状态向量为:(见公式7)

对CA模型,一步预测方程为:

雅克比矩阵为:

对CV模型,一步预测方程为:

雅克比矩阵为:

采用上述方程,对CA模型和CV模型进行跟踪。

多模型融合决策

该论文中,作者并没有采用IMM模型进行融合。而是采用了一种简单的逻辑策略,对各个模型计算的TTC进行融合。

融合策略如下:

  • 计算观测值在各个模型中的似然估计p1和p2,估计原理戳here;

d_a(t)=0,可求得ttc的值,即公式7的根。

实验结果

这篇关于一文读懂TTC碰撞时间算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471356

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

一文彻底搞懂Java 中的 SPI 是什么

《一文彻底搞懂Java中的SPI是什么》:本文主要介绍Java中的SPI是什么,本篇文章将通过经典题目、实战解析和面试官视角,帮助你从容应对“SPI”相关问题,赢得技术面试的加分项,需要的朋... 目录一、面试主题概述二、高频面试题汇总三、重点题目详解✅ 面试题1:Java 的 SPI 是什么?如何实现一个

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS