一文读懂TTC碰撞时间算法

2023-12-08 21:20

本文主要是介绍一文读懂TTC碰撞时间算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在当今的自动驾驶车上,需要更先进和复杂的驾驶辅助系统。大多数车通过一个前向摄像头来实现如LDW(lane departure warning)、TSR(traffic sign recognition)、FCW(forward collision warning)等功能。由于应用环境的复杂性,FCW是一个相当具有挑战的任务,一种鲁邦、可靠的ttc估计方法将显得尤为重要。

TTC为自车与前车发生碰撞的时间,定义为自车与障碍物之间的距离除以相对速度。在单目系统中,测距和测速并不是一个简单的任务。而基于单目视觉的TTC估计是在不需要计算实际距离和速度的前提下,算得自车与前车的碰撞时间

TTC计算理论

在视频流中,在一个短暂的时间内,TTC可以通过目标的尺寸除以尺寸变化来计算。证明如下:

令Z为自车与目标的物理距离,\bigtriangleup X为目标物理宽度,D=x2-x1为目标在图像上的像素宽度。

根据相机投影模型 x=Xf/Z可得,

x1=X_1f/Z,         x2=X_2f/Z

目标实际的物理宽度有

\Delta X=X_1-X_2=(x1-x2)*Z/f=D*Z/f

由于在实际的物理环境中,目标的物理宽度是不变的,对物理宽度求导可得:

但是在实际应用场景,相对速度是实时变化的,那么图像中目标的尺寸D和尺寸变化率也是实时变化的,那么,准确地计算出目标的尺寸和尺寸变化率并不是一件容易的事情。为鲁邦、可靠的估算TTC,仅靠上述公式,算得的ttc是不稳定的。

《Time To Contact Estimation Using Interest Points》提供了一种简单、稳定的TTC估算方法。以下内容将围绕该文章介绍TTC的估算方式。

Time To Contact Estimation Using Interest Points

该方法的主要思想:

  • 利用目标关键点估计目标的尺寸变化S;
  • 然后利用S建立目标的匀速运动模型和加速运动模型;
  • 用扩展Kalman滤波跟踪模型参数;
  • 采用策略融合多种运动模型的计算结果。

在实际应用中,本人认为采用匀加速模型(CA)和匀速模型(CV)即可。

运动模型建立

利用相似三角形原理,可得:

w(t)=f*W/d_\theta (t),其中,d_\theta (t)为带参数的运动模型。

那么,在不同时刻,我们有:

\frac{w(t_1) }{w(t_2)}=\frac{d_\theta(t_2)}{d_\theta(t_1)}

t_1=0, t_2=-\bigtriangleup t, s_i=\frac{w(0)}{w(-\bigtriangleup t_i)}。假定已测得若干组s,

则有

假定运动模型为:

其中,

利用最小二乘拟合该2阶曲线,即可求得\tilde{a}\tilde{v}

计算尺寸变化S

\vec{x_i}^{'}\vec{x_i}为不同帧中的对应点(该对应点可通过关键点匹配或者LK光流算得,对于关键点计算,在本文中不做讨论。欢迎评论或者留言)。采用放射变换计算s。

利用最小二乘算法,可求得:

{\hat{s}}是s的有偏估计,目标尺寸w越小,估计误差越大。

多模型跟踪

采用扩展卡尔曼模型跟踪运动模型的参数,运动模型为CA模型和CV模型。再进行多模型的融合决策,得出最终的TTC。

(该论文中,作者没有采用IMM Kalman (Interactive Multi model kalman filter algorithm)对多个模型进行融合。)

(对于Kalman、扩展Kalman、IMM等模型,将在后续文章中更新,欢迎关注、评论和留言)

状态向量为:(见公式7)

对CA模型,一步预测方程为:

雅克比矩阵为:

对CV模型,一步预测方程为:

雅克比矩阵为:

采用上述方程,对CA模型和CV模型进行跟踪。

多模型融合决策

该论文中,作者并没有采用IMM模型进行融合。而是采用了一种简单的逻辑策略,对各个模型计算的TTC进行融合。

融合策略如下:

  • 计算观测值在各个模型中的似然估计p1和p2,估计原理戳here;

d_a(t)=0,可求得ttc的值,即公式7的根。

实验结果

这篇关于一文读懂TTC碰撞时间算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471356

相关文章

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim