win7 eclipse调用虚拟机ubuntu部署的hadoop2.2.0伪分布(1)

2023-12-08 16:38

本文主要是介绍win7 eclipse调用虚拟机ubuntu部署的hadoop2.2.0伪分布(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

所用软件下载网址:链接:http://pan.baidu.com/s/1bn4IIQF密码:ramg

win7环境下jdk下载路径(/jdk/jdk-7u71-windows-i586.exe)

eclipse下载路径(/eclipse/eclipse-jee-indigo-SR2-win32.zip)

hadoop插件下载路径(/hadoop/eclipse插件/hadoop2x-eclipse-plugin.zip)

此片文章原文链接:http://www.linuxidc.com/Linux/2014-09/106148p2.htm,

注:

(1)本人使用的是/home/tom/hadoop-2.2.0,/usr/mywind/hadoop路径替换为/home/tom/hadoop-2.2.0即可

(2)创建用户此文用的是a01513,替换为tom即可

(3)IP地址自行修改

1、基于Eclipse的Hadoop2.x开发环境配置

关于JDK及ECLIPSE的安装我就不再介绍了,相信能玩Hadoop的人对这种配置都已经再熟悉不过了,如果实在不懂建议到谷歌百度去搜索一下教程。假设你已经把Hadoop的Eclipse插件下载下来了,然后解压把jar文件放到Eclipse的plugins文件夹里面:

 

重启Eclipse即可。

然后我们再安装Hadoop到Win7下,在这不再详细说明,跟安装JDK大同小异,在这个例子中我安装到了E:\hadoop。

启动Eclipse,点击菜单栏的【Windows/窗口】→【Preferences/首选项】→【Hadoop Map/Reduce】,把Hadoop Installation Directory设置成开发机上的Hadoop主目录:

 

点击OK。

开发环境配置完成,下面我们可以新建一个测试Hadoop项目,右键【NEW/新建】→【Others、其他】,选择Map/Reduce Project

 

输入项目名称点击【Finish/完成】:

 

创建完成后可以看到如下目录:

 

然后在SRC下建立下面包及类:

 

以下是代码内容:

TestMapper.javapackage com.my.hadoop.mapper;import java.io.IOException;import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;public class TestMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {private static final int MISSING = 9999;private static final Log LOG = LogFactory.getLog(TestMapper.class);public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter)throws IOException {String line = value.toString();String year = line.substring(15, 19);int airTemperature;if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signsairTemperature = Integer.parseInt(line.substring(88, 92));} else {airTemperature = Integer.parseInt(line.substring(87, 92));}LOG.info("loki:"+airTemperature);String quality = line.substring(92, 93);LOG.info("loki2:"+quality);if (airTemperature != MISSING && quality.matches("[012459]")) {LOG.info("loki3:"+quality);output.collect(new Text(year), new IntWritable(airTemperature));}}}TestReducer.javapackage com.my.hadoop.reducer;import java.io.IOException;
import java.util.Iterator;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.Reducer;public class TestReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {@Overridepublic void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter)throws IOException{int maxValue = Integer.MIN_VALUE;while (values.hasNext()) {maxValue = Math.max(maxValue, values.next().get());}output.collect(key, new IntWritable(maxValue));}}TestHadoop.javapackage com.my.hadoop.test.main;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;import com.my.hadoop.mapper.TestMapper;
import com.my.hadoop.reducer.TestReducer;public class TestHadoop {public static void main(String[] args) throws Exception{if (args.length != 2) {System.err.println("Usage: MaxTemperature <input path> <output path>");System.exit(-1);}JobConf job = new JobConf(TestHadoop.class);job.setJobName("Max temperature");FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));job.setMapperClass(TestMapper.class);job.setReducerClass(TestReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);JobClient.runJob(job);}}

为了方便对于Hadoop的HDFS文件系统操作,我们可以在Eclipse下面的Map/Reduce Locations窗口与Hadoop建立连接,直接右键新建Hadoop连接即可:

连接配置如下:

其中,Location name可任意填写,Mapreduce Master中Host为resourcemanager机器ip,Port为resourcemanager接受任务的端口号,即yarn-site.xml文件中yarn.resourcemanager.scheduler.address配置项中端口号。DFS Master中的Host为namenode机器ip,Port为core-site.xml文件中fs.defaultFS配置项中端口号。

然后点击完成即可,新建完成后,我们可以在左侧目录中看到HDFS的文件系统目录:

这里不仅可以显示目录结构,还可以对文件及目录进行删除、新增等操作,非常方便。

当上面的工作都做好之后,就可以把这个项目导出来了(导成jar文件放到Hadoop服务器上运行):

点击完成,然后把这个testt.jar文件上传到Hadoop服务器(192.168.8.184)上,目录(其实可以放到其他目录,你自己喜欢)是:

/usr/mywind/hadoop/share/hadoop/mapreduce

如下图:

 

2、运行Hadoop程序及查看运行日志

当上面的工作准备好了之后,我们运行自己写的Hadoop程序很简单:

$ hadoop  jar  /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop  input  output

注意这是output文件夹名称不能重复哦,假如你执行了一次,在HDFS文件系统下面会自动生成一个output文件夹,第二次运行时,要么把output文件夹先删除($ hdfs dfs -rmr /user/a01513/output),要么把命令中的output改成其他名称如output1、output2等等。

如果看到以下输出结果,证明你的运行成功了:

a01513@hadoop :~$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar                                                                              com.my.hadoop.test.main.TestHadoop input output
14/09/02 11:14:03 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                            :8032
14/09/02 11:14:04 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                            :8032
14/09/02 11:14:04 WARN mapreduce.JobSubmitter: Hadoop command-line option parsin                                                                            g not performed. Implement the Tool interface and execute your application with                                                                              ToolRunner to remedy this.
14/09/02 11:14:04 INFO mapred.FileInputFormat: Total input paths to process : 1
14/09/02 11:14:04 INFO mapreduce.JobSubmitter: number of splits:2
14/09/02 11:14:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_14                                                                            09386620927_0015
14/09/02 11:14:05 INFO impl.YarnClientImpl: Submitted application application_14                                                                            09386620927_0015
14/09/02 11:14:05 INFO mapreduce.Job: The url to track the job: http://hadoop:80                                                                            88/proxy/application_1409386620927_0015/
14/09/02 11:14:05 INFO mapreduce.Job: Running job: job_1409386620927_0015
14/09/02 11:14:12 INFO mapreduce.Job: Job job_1409386620927_0015 running in uber mode : false
14/09/02 11:14:12 INFO mapreduce.Job:  map 0% reduce 0%
14/09/02 11:14:21 INFO mapreduce.Job:  map 100% reduce 0%
14/09/02 11:14:28 INFO mapreduce.Job:  map 100% reduce 100%
14/09/02 11:14:28 INFO mapreduce.Job: Job job_1409386620927_0015 completed successfully
14/09/02 11:14:29 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=105FILE: Number of bytes written=289816FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=1638HDFS: Number of bytes written=10HDFS: Number of read operations=9HDFS: Number of large read operations=0HDFS: Number of write operations=2Job CountersLaunched map tasks=2Launched reduce tasks=1Data-local map tasks=2Total time spent by all maps in occupied slots (ms)=14817Total time spent by all reduces in occupied slots (ms)=4500Total time spent by all map tasks (ms)=14817Total time spent by all reduce tasks (ms)=4500Total vcore-seconds taken by all map tasks=14817Total vcore-seconds taken by all reduce tasks=4500Total megabyte-seconds taken by all map tasks=15172608Total megabyte-seconds taken by all reduce tasks=4608000Map-Reduce FrameworkMap input records=9Map output records=9Map output bytes=81Map output materialized bytes=111Input split bytes=208Combine input records=0Combine output records=0Reduce input groups=1Reduce shuffle bytes=111Reduce input records=9Reduce output records=1Spilled Records=18Shuffled Maps =2Failed Shuffles=0Merged Map outputs=2GC time elapsed (ms)=115CPU time spent (ms)=1990Physical memory (bytes) snapshot=655314944Virtual memory (bytes) snapshot=2480295936Total committed heap usage (bytes)=466616320Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format CountersBytes Read=1430File Output Format CountersBytes Written=10
a01513@hadoop :~$

我们可以到Eclipse查看输出的结果:

或者用命令行查看:

$ hdfs dfs -cat output/part-00000

假如你们发现运行后结果是为空的,可能到日志目录查找相应的log.info输出信息,log目录在:/usr/mywind/hadoop/logs/userlogs 下面。

 

 



这篇关于win7 eclipse调用虚拟机ubuntu部署的hadoop2.2.0伪分布(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470580

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python如何调用另一个类的方法和属性

《Python如何调用另一个类的方法和属性》在Python面向对象编程中,类与类之间的交互是非常常见的场景,本文将详细介绍在Python中一个类如何调用另一个类的方法和属性,大家可以根据需要进行选择... 目录一、前言二、基本调用方式通过实例化调用通过类继承调用三、高级调用方式通过组合方式调用通过类方法/静

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制

Python用Flask封装API及调用详解

《Python用Flask封装API及调用详解》本文介绍Flask的优势(轻量、灵活、易扩展),对比GET/POST表单/JSON请求方式,涵盖错误处理、开发建议及生产环境部署注意事项... 目录一、Flask的优势一、基础设置二、GET请求方式服务端代码客户端调用三、POST表单方式服务端代码客户端调用四

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

Python跨文件实例化、跨文件调用及导入库示例代码

《Python跨文件实例化、跨文件调用及导入库示例代码》在Python开发过程中,经常会遇到需要在一个工程中调用另一个工程的Python文件的情况,:本文主要介绍Python跨文件实例化、跨文件调... 目录1. 核心对比表格(完整汇总)1.1 自定义模块跨文件调用汇总表1.2 第三方库使用汇总表1.3 导