本文主要是介绍win7 eclipse调用虚拟机ubuntu部署的hadoop2.2.0伪分布(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
所用软件下载网址:链接:http://pan.baidu.com/s/1bn4IIQF密码:ramg
win7环境下jdk下载路径(/jdk/jdk-7u71-windows-i586.exe)
eclipse下载路径(/eclipse/eclipse-jee-indigo-SR2-win32.zip)
hadoop插件下载路径(/hadoop/eclipse插件/hadoop2x-eclipse-plugin.zip)
此片文章原文链接:http://www.linuxidc.com/Linux/2014-09/106148p2.htm,
注:
(1)本人使用的是/home/tom/hadoop-2.2.0,/usr/mywind/hadoop路径替换为/home/tom/hadoop-2.2.0即可
(2)创建用户此文用的是a01513,替换为tom即可
(3)IP地址自行修改
1、基于Eclipse的Hadoop2.x开发环境配置
关于JDK及ECLIPSE的安装我就不再介绍了,相信能玩Hadoop的人对这种配置都已经再熟悉不过了,如果实在不懂建议到谷歌百度去搜索一下教程。假设你已经把Hadoop的Eclipse插件下载下来了,然后解压把jar文件放到Eclipse的plugins文件夹里面:
重启Eclipse即可。
然后我们再安装Hadoop到Win7下,在这不再详细说明,跟安装JDK大同小异,在这个例子中我安装到了E:\hadoop。
启动Eclipse,点击菜单栏的【Windows/窗口】→【Preferences/首选项】→【Hadoop Map/Reduce】,把Hadoop Installation Directory设置成开发机上的Hadoop主目录:
点击OK。
开发环境配置完成,下面我们可以新建一个测试Hadoop项目,右键【NEW/新建】→【Others、其他】,选择Map/Reduce Project
输入项目名称点击【Finish/完成】:
创建完成后可以看到如下目录:
然后在SRC下建立下面包及类:
以下是代码内容:
TestMapper.javapackage com.my.hadoop.mapper;import java.io.IOException;import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;public class TestMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {private static final int MISSING = 9999;private static final Log LOG = LogFactory.getLog(TestMapper.class);public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter)throws IOException {String line = value.toString();String year = line.substring(15, 19);int airTemperature;if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signsairTemperature = Integer.parseInt(line.substring(88, 92));} else {airTemperature = Integer.parseInt(line.substring(87, 92));}LOG.info("loki:"+airTemperature);String quality = line.substring(92, 93);LOG.info("loki2:"+quality);if (airTemperature != MISSING && quality.matches("[012459]")) {LOG.info("loki3:"+quality);output.collect(new Text(year), new IntWritable(airTemperature));}}}TestReducer.javapackage com.my.hadoop.reducer;import java.io.IOException;
import java.util.Iterator;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.Reducer;public class TestReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {@Overridepublic void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter)throws IOException{int maxValue = Integer.MIN_VALUE;while (values.hasNext()) {maxValue = Math.max(maxValue, values.next().get());}output.collect(key, new IntWritable(maxValue));}}TestHadoop.javapackage com.my.hadoop.test.main;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;import com.my.hadoop.mapper.TestMapper;
import com.my.hadoop.reducer.TestReducer;public class TestHadoop {public static void main(String[] args) throws Exception{if (args.length != 2) {System.err.println("Usage: MaxTemperature <input path> <output path>");System.exit(-1);}JobConf job = new JobConf(TestHadoop.class);job.setJobName("Max temperature");FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));job.setMapperClass(TestMapper.class);job.setReducerClass(TestReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);JobClient.runJob(job);}}
为了方便对于Hadoop的HDFS文件系统操作,我们可以在Eclipse下面的Map/Reduce Locations窗口与Hadoop建立连接,直接右键新建Hadoop连接即可:
连接配置如下:
其中,Location name可任意填写,Mapreduce Master中Host为resourcemanager机器ip,Port为resourcemanager接受任务的端口号,即yarn-site.xml文件中yarn.resourcemanager.scheduler.address配置项中端口号。DFS Master中的Host为namenode机器ip,Port为core-site.xml文件中fs.defaultFS配置项中端口号。
然后点击完成即可,新建完成后,我们可以在左侧目录中看到HDFS的文件系统目录:
这里不仅可以显示目录结构,还可以对文件及目录进行删除、新增等操作,非常方便。
当上面的工作都做好之后,就可以把这个项目导出来了(导成jar文件放到Hadoop服务器上运行):
点击完成,然后把这个testt.jar文件上传到Hadoop服务器(192.168.8.184)上,目录(其实可以放到其他目录,你自己喜欢)是:
/usr/mywind/hadoop/share/hadoop/mapreduce
如下图:
2、运行Hadoop程序及查看运行日志
当上面的工作准备好了之后,我们运行自己写的Hadoop程序很简单:
$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop input output
注意这是output文件夹名称不能重复哦,假如你执行了一次,在HDFS文件系统下面会自动生成一个output文件夹,第二次运行时,要么把output文件夹先删除($ hdfs dfs -rmr /user/a01513/output),要么把命令中的output改成其他名称如output1、output2等等。
如果看到以下输出结果,证明你的运行成功了:
a01513@hadoop :~$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop input output
14/09/02 11:14:03 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0 :8032
14/09/02 11:14:04 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0 :8032
14/09/02 11:14:04 WARN mapreduce.JobSubmitter: Hadoop command-line option parsin g not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
14/09/02 11:14:04 INFO mapred.FileInputFormat: Total input paths to process : 1
14/09/02 11:14:04 INFO mapreduce.JobSubmitter: number of splits:2
14/09/02 11:14:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_14 09386620927_0015
14/09/02 11:14:05 INFO impl.YarnClientImpl: Submitted application application_14 09386620927_0015
14/09/02 11:14:05 INFO mapreduce.Job: The url to track the job: http://hadoop:80 88/proxy/application_1409386620927_0015/
14/09/02 11:14:05 INFO mapreduce.Job: Running job: job_1409386620927_0015
14/09/02 11:14:12 INFO mapreduce.Job: Job job_1409386620927_0015 running in uber mode : false
14/09/02 11:14:12 INFO mapreduce.Job: map 0% reduce 0%
14/09/02 11:14:21 INFO mapreduce.Job: map 100% reduce 0%
14/09/02 11:14:28 INFO mapreduce.Job: map 100% reduce 100%
14/09/02 11:14:28 INFO mapreduce.Job: Job job_1409386620927_0015 completed successfully
14/09/02 11:14:29 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=105FILE: Number of bytes written=289816FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=1638HDFS: Number of bytes written=10HDFS: Number of read operations=9HDFS: Number of large read operations=0HDFS: Number of write operations=2Job CountersLaunched map tasks=2Launched reduce tasks=1Data-local map tasks=2Total time spent by all maps in occupied slots (ms)=14817Total time spent by all reduces in occupied slots (ms)=4500Total time spent by all map tasks (ms)=14817Total time spent by all reduce tasks (ms)=4500Total vcore-seconds taken by all map tasks=14817Total vcore-seconds taken by all reduce tasks=4500Total megabyte-seconds taken by all map tasks=15172608Total megabyte-seconds taken by all reduce tasks=4608000Map-Reduce FrameworkMap input records=9Map output records=9Map output bytes=81Map output materialized bytes=111Input split bytes=208Combine input records=0Combine output records=0Reduce input groups=1Reduce shuffle bytes=111Reduce input records=9Reduce output records=1Spilled Records=18Shuffled Maps =2Failed Shuffles=0Merged Map outputs=2GC time elapsed (ms)=115CPU time spent (ms)=1990Physical memory (bytes) snapshot=655314944Virtual memory (bytes) snapshot=2480295936Total committed heap usage (bytes)=466616320Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format CountersBytes Read=1430File Output Format CountersBytes Written=10
a01513@hadoop :~$
我们可以到Eclipse查看输出的结果:
或者用命令行查看:
$ hdfs dfs -cat output/part-00000
假如你们发现运行后结果是为空的,可能到日志目录查找相应的log.info输出信息,log目录在:/usr/mywind/hadoop/logs/userlogs 下面。
这篇关于win7 eclipse调用虚拟机ubuntu部署的hadoop2.2.0伪分布(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!