目标检测——SPPNet算法解读

2023-12-07 21:15

本文主要是介绍目标检测——SPPNet算法解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
链接:https://arxiv.org/abs/1406.4729

目录

  • 1、算法概述
  • 2、Deep Networks with Spatial Pyramid Pooling
    • 2.1 SPP Layer
    • 2.2 网络训练
  • 3、实验结果
    • 3.1 分类
    • 3.2 检测
  • 4、创新点和不足

1、算法概述

之前的工作,神经网络都要求固定尺寸的输入,比如:224x224,这就限制了输入图像的宽高比,当对于其他任意尺寸图像时,基本都是通过裁剪或直接拉伸的方式变换到固定尺寸。但是裁剪有可能不能完全包含目标,直接拉伸也会造成目标的形变及失真,这都会造成识别精度下降。
在这里插入图片描述
为什么卷积神经网络需要固定尺寸的输入?CNN由两部分组成:卷积层和全连接层,实际上卷积层不需要固定尺寸的输入,它可以对任意尺寸的图像生成任意尺寸的特征图;而全连接层根据其定义来看才需要固定尺寸的输入。全连接层通常在CNN的深层阶段,所以本文作者提出空间金字塔池化(SPP, Spatial Pyramid Pooling)层用于固定CNN中最后一层卷积层的输出,使得全连接层的输入得到统一。这一操作使得CNN可以接受任意尺寸的输入,不必经过裁剪(crop)和扭曲拉伸(warp)。在目标检测方面,加入这一操作的SPP-Net比R-CNN快24到102倍,全过程下来速度为0.5s/image。
SPP的优势有:
1、针对不同尺寸的输入可以得到相同维度的输出,而siding window pooling 做不到;
2、SPP使用multi-level spatial bins, 而siding window pooling采用的单一的窗口,multi-level对目标变形非常鲁棒;
3、由于输入尺寸的可变性,SPP可以提取不同尺度的特征。
4、SPP-Net能使得我们在训练中使用多尺度训练,避免过拟合,使得最终的精度相比固定尺寸训练有所提升。

2、Deep Networks with Spatial Pyramid Pooling

2.1 SPP Layer

作者首先可视化了网络特征图,表明了特征图不仅反映了相应的强度和涉及到它们的空间位置。卷积层可以接受任意大小的输入并输出任意尺寸的特征图,但分类器(SVM/softmax)或者全连接层只能接受固定尺寸的输入。
在这里插入图片描述
为了让CNN适应任意大小的图像,作者将最后一个池化层(例如,在最后一个卷积层之后的pool5层)替换为空间金字塔池化层。如上图所示,空间金字塔池化的输出是kM维向量,桶(bins)的数量记为M,k是最后一个卷积层的输出特征图数量,图中k为256。每个特征图的尺寸为axa,被切分为nxn的bins,那么采用窗口为win=ceil(a/n)和步长为str=floor(a/n)的max-pooling。最后将所有的特征级联起来(固定维度kM)作为全连接层的输入。这样就保证了无论输入图像的尺寸,输入全连接层的输入都有同样的大小。
网络处理流程如下:
在这里插入图片描述

2.2 网络训练

单尺度训练,固定裁剪输入图像为224x224,最后一层卷积层输出特征图大小为13x13,设置三个级别的空间金字塔池化操作,SPP设置如下:
在这里插入图片描述
多尺度训练,采用两个尺度训练,180x180,224x224;180尺寸的图片是224尺寸的直接resize得到,而不是通过裁剪得到,所以两种尺度的区域只在分辨率上不同,而在内容/布局上没有区别。对于180x180的输入图像,最后一层卷积层输出特征图大小为10x10,通过SPP层,180x180的输入大小和224x224的输入大小得到相同维度的全连接层输入。
以上单/多尺度训练主要应用于训练阶段,在测试推理阶段,SPPNet可以接受任意大小的输入图像。

3、实验结果

3.1 分类

数据集采用ImageNet 2012,输入图片固定为224x224,Baseline model的结构如下
在这里插入图片描述
将网络最后一个池化层替换成SPP层后,对应的结果分别为:
在这里插入图片描述
可见多尺度训练对模型也有提升
ILSVRC2014分类竞赛的结果如下,SPP-Net取到第三名的结果,第一名是GoogLeNet,第二名VGG
在这里插入图片描述

3.2 检测

SPP-Net也可以用于目标检测。相较于R-CNN的2000次提取特征,SPP-Net只从整个图像中提取一次特征映射(可能在多个尺度上)。然后对特征图上的每个候选框应用空间金字塔池操作,该候选框对应的特征通过SPP操作将变成固定长度的向量,如下图所示。由于只应用一次卷积操作,所以我们的方法可以运行速度提高几个数量级。
在这里插入图片描述
实验设置:相对于R-CNN,SPP-Net还是用selective search提出区域候选框(测试阶段2000个),SPP-Net的backbone部分采用ZF-5,SPP层采用4级空间金字塔(1x1,2x2,3x3,6x6,共50个bins),这样每个候选框区域这就会生成12800维(256x50)的特征向量用于全连接层的输入。后面训练每个类别的SVM分类器也是用这个12800维的特征。训练SVM的样本设置方案和R-CNN一致,也采用负样本难度挖掘技术。
在这里插入图片描述
因为SPP-Net和R-CNN采用的方式差不多,只是SPP-Net将R-CNN的2000次提取特征的过程集中到一次完成,所以它们最终的mAP区别不大,但SPP-Net的速度比R-CNN的快非常多。

4、创新点和不足

  • 创新点:
    1、针对不同尺寸的输入可以得到相同维度的输出,实现了多尺度训练的可能,能让网络见到多尺度图片,增加鲁棒性。
    2、首次提出单尺度/多尺度交替训练。
    3、改进R-CNN的提取特征方式,合并2000次提取为一次提取,大大提升了速度。
  • 不足:
    1、还是没有改进候选框区域生成;
    2、特征提取、SVM分类、边框回归这三个阶段是独立的,需分别进行训练和推理,效率较低。

这篇关于目标检测——SPPNet算法解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467388

相关文章

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一