Python机器学习入门1.2《良、恶性乳腺肿瘤预测》

2023-12-07 15:10

本文主要是介绍Python机器学习入门1.2《良、恶性乳腺肿瘤预测》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在看这篇博客之前,你应该先看我的上一篇博客Python机器学习入门1.1《良、恶性乳腺肿瘤预测》

监督学习之分类学习:

线性分类器: 这里用到的是Logistic函数,在本篇中不打算细讲,有兴趣可以去了解。

First:良、恶性肿瘤数据预处理

我们进入数据的网页查看:
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

可以看到中间有的数据含有?,因此 需要将其替换为标准缺失值,并丢弃。

data数据结果:

代码如下: 

 

#导入相关包
import pandas as pd
import numpy as np#创建特征列表
column_names=['Sample code number','Clump Thickness','Uniformity Cell Size','Uniformity of Cell Shape','Marginal Adhesion','Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']#从互联网读取指定数据
data=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data',names=column_names)#将?替换为标准缺失值表示
data=data.replace(to_replace='?',value=np.nan)#丢失带有缺失值的数据(只要有一个维度有缺失)
data=data.dropna(how='any')#输出data的数据量和维度
data.shape
print(data.shape)

 准备良、恶性乳腺癌肿瘤训练、测试数据:

#分割数据
from sklearn.cross_validation import train_test_split#随机采样25%数据用于测试,剩下的75%用于构建训练集合
X_train, X_test, y_train, y_test=train_test_split(data[column_names[1:10]],data[column_names[10]],test_size=0.25, random_state=33)#查验训练样本的数量和类别分布
print(y_train.value_counts())#查验测试样本的数量和类别分布
print(y_test.value_counts())

使用线性分类模型从事良、恶性肿瘤预测任务:


#使用线性分类模型从事良、恶性肿瘤预测任务
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
#标准化测试数据,保证每个维度方差为1,均值为0.使得预测结果不会被某些维度过大的特征值而主导
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.fit_transform(X_test)#初始化LogisticRegression 和 SGDClassifier
lr=LogisticRegression()
sgdc=SGDClassifier()#调用LogisticRegression中的fit函数、模块用来训练模型参数
lr.fit(X_train,y_train)#使用训练好的模型lr对X_test进行预测,结果储存在变量lr_y_predict中
lr_y_predict=lr.predict(X_test)#调用SGDClassifier中的fit函数、模块用来训练模型参数
sgdc.fit(X_train,y_train)
#使用训练好的模型sgdc对X_test进行预测,结果储存在变量sgdc_y_predict中
sgdc_y_predict=sgdc.predict(X_test)

 使用线性分类模型从事良、恶性肿瘤预测任务的性能分析:


#使用逻辑斯蒂回归模型自带的评分函数score获得模型在测试集上的准确性结果
print('Accurary of LR Classifier:',lr.score(X_test,y_test))
from sklearn.metrics import classification_report
#利用classification_report 模块获得LogisticRegression其他三个指标的结果
print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))#使用随机梯度下降模型自带的评分函数score获得模型在测试集上的准确性的结果
print('Accuarcy SGD Classifier:',sgdc.score(X_test,y_test))
#利用classification_report模块SGDClassifier其他三个指标的结果
print(classification_report(y_test,sgdc_y_predict,target_names=['Benign','Malignant']))

最后一个结果如下:

这篇关于Python机器学习入门1.2《良、恶性乳腺肿瘤预测》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466337

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.