[ADAS预研笔记]感知算法 - 引言及常用数据集

2023-12-06 16:50

本文主要是介绍[ADAS预研笔记]感知算法 - 引言及常用数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CNN用于图像分类、目标检测、语义分割等方向;

RNN用于与时序相关的追踪等方向。

现代深度学习算法结构(引言)

在现代深度学习算法研究中, 通用的骨干网络(backbone)+特定任务头(head) 成为一种标准的设计模式。

背景:

  • 图像分类算法是其他计算机视觉子任务的基础,目标检测与语义分割都会将问题逐步简化为图像分类问题;
  • 因此图像分类的算法主体被迁移过来用作特征提取,称为骨干网络(backbone);
  • 原本的图像分类算法也重新进行了划分:全连接层之前的一系列卷积层+池化层即 backbone ,全连接层+softmax即图像分类的 head 。

详细的backbone与head介绍将在下文各类CNN介绍后展开。

常用数据集

模型训练依赖于已经打好标签的数据集作为loss计算的依据以及模型验证,目前主流的开放数据集有如下三类。

ImageNet与ILSVRC

ImageNet:ImageNet是一个超过15 million的图像数据集,大约有22,000类。

ILSVRC:全称ImageNet Large-Scale Visual Recognition Challenge,从2010年开始举办到2017年最后一届,使用ImageNet数据集的一个子集,总共有1000类;

ILSVRC是图像分类领域最具影响力的竞赛,诞生了绝大多数的图像分类算法。

算法研究中常用ILSVRC竞赛数据集来训练模型并验证模型效果,ILSVRC竞赛数据集面向图像分类+目标检测,其输入大小为224*224,深度为3。各年的ILSVRC竞赛所使用的数据集如下:

年份

图像分类数据集

目标检测数据集

2012

include

not include

2013

remain 2012

include

2014

remain 2012

more than 2013

2015

remain 2012

remain 2014

2016

remain 2012

remain 2014

2017

remain 2012

remain 2014

PASCAL VOC

PASCAL VOC挑战赛主要面向目标检测与语义分割,比赛于2012年停办,但研究者依然可以使用PASCAL VOC数据集训练模型并上传验证结果。

PASCAL VOC数据集输入大小为448*448,主要分为PASCAL VOC 2007和PASCAL VOC2012,两者相互独立;

PASCAL VOC 2007公开了训练集、验证集、测试集;

PASCAL VOC 2012仅公开了训练集、验证集,需提交到官方服务器来评估测试集结果。

训练集用作训练模型;验证集用作自我验证模型效果;测试集用作测试模型效果,不公开可以避免参赛者面向结果编程。

MS COCO

全称为Microsoft Common Objects in Context(MS COCO),面向目标检测、语义分割及其他方向

训练集的不同标注

我们在了解模型时,论文中经常可以看到各种训练集的标注,其含义如下:

  • 07+12:使用 VOC2007 的 train+val 和 VOC2012的 train+val 训练,然后使用 VOC2007的test测试;
  • 07++12:使用 VOC2007 的 train+val+test 和 VOC2012的 train+val训练,然后使用 VOC2012的test测试;
  • 07+12+COCO:先在 MS COCO 的 train+val 上预训练,再使用 VOC2007 的 train+val、 VOC2012的 train+val 微调训练,然后使用 VOC2007的test测试;
  • 07++12+COCO:先在 MS COCO 的 train+val 上预训练,再使用 VOC2007 的 train+val+test 、 VOC2012的 train+val 微调训练,然后使用 VOC2012的test测试。

其他语义分割数据集

Cityscapes:50个城市的城市场景语义理解数据集

Stanford Background Dataset:至少有一个前景物体的一组户外场景

Pascal Context:有400多类的室内和室外场景

CamVid:剑桥大学公开发布的城市道路场景的数据集

SUN RGB-D:普灵斯顿大学的 Vision & Robotics Group 公开的一个有关场景理解的数据集

自动驾驶相关数据集

驾驶数据集:

  • DriveSeg:MIT联合丰田公司在2020年6月份发布的,用于动态驾驶场景分割的MIT DriveSeg数据集,并提供完全开放的免费下载。

  • KITTI:目前最知名的自动驾驶数据集之一。

  • CityScapes:50个城市的城市场景语义理解数据集。

  • Mapillary:由瑞典马尔默的Mapillary AB开发,用来分享含有地理标记照片的服务。其创建者想要利用众包的方式来把整个世界(不仅是街道)以照片的形式存储。

  • D²-City:嘀嘀的一个大规模行车视频数据集。

  • ApolloScape:百度的自动驾驶数据集,该数据集包含147k张像素级语义标注图像。

  • Apollo Synthetic Dataset:百度的自动驾驶的合成数据集,场景使用Unity 3D引擎创建。

  • BDD-100k:Berkeley的大规模自动驾驶视频数据集,主要采集于美国城市的一天中的许多不同时间,天气条件和驾驶场景。

  • Oxford RobotCar:牛津大学的项目,数据是对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气、行人和交通情况下的数据,也有建筑和道路施工时的数据,长达1000小时以上。

  • nuScenes:由Motional(前身为nuTonomy)团队开发的用于自动驾驶的共有大型数据集。数据集来源于波士顿和新加坡采集的1000个驾驶场景,每个场景选取了20秒长的视频,包括大约140万个图像、39万个激光雷达点云、140万个雷达扫描和4万个关键帧中的140万个对象边界框。

交通标志数据集:

  • KUL Belgium Traffic Sign Dataset:比利时的一个交通标志数据集。

  • German Traffic Sign:德国交通标注数据集。

  • STSD:超过20 000张带有20%标签的图像,包含3488个交通标志。

  • LISA:超过6610帧上的7855条标注。

  • Tsinghua-Tencent 100K:腾讯和清华合作的数据集,100000张图片,包含30000个交通标志实例。

这篇关于[ADAS预研笔记]感知算法 - 引言及常用数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/462552

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L