[ADAS预研笔记]感知算法 - 引言及常用数据集

2023-12-06 16:50

本文主要是介绍[ADAS预研笔记]感知算法 - 引言及常用数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CNN用于图像分类、目标检测、语义分割等方向;

RNN用于与时序相关的追踪等方向。

现代深度学习算法结构(引言)

在现代深度学习算法研究中, 通用的骨干网络(backbone)+特定任务头(head) 成为一种标准的设计模式。

背景:

  • 图像分类算法是其他计算机视觉子任务的基础,目标检测与语义分割都会将问题逐步简化为图像分类问题;
  • 因此图像分类的算法主体被迁移过来用作特征提取,称为骨干网络(backbone);
  • 原本的图像分类算法也重新进行了划分:全连接层之前的一系列卷积层+池化层即 backbone ,全连接层+softmax即图像分类的 head 。

详细的backbone与head介绍将在下文各类CNN介绍后展开。

常用数据集

模型训练依赖于已经打好标签的数据集作为loss计算的依据以及模型验证,目前主流的开放数据集有如下三类。

ImageNet与ILSVRC

ImageNet:ImageNet是一个超过15 million的图像数据集,大约有22,000类。

ILSVRC:全称ImageNet Large-Scale Visual Recognition Challenge,从2010年开始举办到2017年最后一届,使用ImageNet数据集的一个子集,总共有1000类;

ILSVRC是图像分类领域最具影响力的竞赛,诞生了绝大多数的图像分类算法。

算法研究中常用ILSVRC竞赛数据集来训练模型并验证模型效果,ILSVRC竞赛数据集面向图像分类+目标检测,其输入大小为224*224,深度为3。各年的ILSVRC竞赛所使用的数据集如下:

年份

图像分类数据集

目标检测数据集

2012

include

not include

2013

remain 2012

include

2014

remain 2012

more than 2013

2015

remain 2012

remain 2014

2016

remain 2012

remain 2014

2017

remain 2012

remain 2014

PASCAL VOC

PASCAL VOC挑战赛主要面向目标检测与语义分割,比赛于2012年停办,但研究者依然可以使用PASCAL VOC数据集训练模型并上传验证结果。

PASCAL VOC数据集输入大小为448*448,主要分为PASCAL VOC 2007和PASCAL VOC2012,两者相互独立;

PASCAL VOC 2007公开了训练集、验证集、测试集;

PASCAL VOC 2012仅公开了训练集、验证集,需提交到官方服务器来评估测试集结果。

训练集用作训练模型;验证集用作自我验证模型效果;测试集用作测试模型效果,不公开可以避免参赛者面向结果编程。

MS COCO

全称为Microsoft Common Objects in Context(MS COCO),面向目标检测、语义分割及其他方向

训练集的不同标注

我们在了解模型时,论文中经常可以看到各种训练集的标注,其含义如下:

  • 07+12:使用 VOC2007 的 train+val 和 VOC2012的 train+val 训练,然后使用 VOC2007的test测试;
  • 07++12:使用 VOC2007 的 train+val+test 和 VOC2012的 train+val训练,然后使用 VOC2012的test测试;
  • 07+12+COCO:先在 MS COCO 的 train+val 上预训练,再使用 VOC2007 的 train+val、 VOC2012的 train+val 微调训练,然后使用 VOC2007的test测试;
  • 07++12+COCO:先在 MS COCO 的 train+val 上预训练,再使用 VOC2007 的 train+val+test 、 VOC2012的 train+val 微调训练,然后使用 VOC2012的test测试。

其他语义分割数据集

Cityscapes:50个城市的城市场景语义理解数据集

Stanford Background Dataset:至少有一个前景物体的一组户外场景

Pascal Context:有400多类的室内和室外场景

CamVid:剑桥大学公开发布的城市道路场景的数据集

SUN RGB-D:普灵斯顿大学的 Vision & Robotics Group 公开的一个有关场景理解的数据集

自动驾驶相关数据集

驾驶数据集:

  • DriveSeg:MIT联合丰田公司在2020年6月份发布的,用于动态驾驶场景分割的MIT DriveSeg数据集,并提供完全开放的免费下载。

  • KITTI:目前最知名的自动驾驶数据集之一。

  • CityScapes:50个城市的城市场景语义理解数据集。

  • Mapillary:由瑞典马尔默的Mapillary AB开发,用来分享含有地理标记照片的服务。其创建者想要利用众包的方式来把整个世界(不仅是街道)以照片的形式存储。

  • D²-City:嘀嘀的一个大规模行车视频数据集。

  • ApolloScape:百度的自动驾驶数据集,该数据集包含147k张像素级语义标注图像。

  • Apollo Synthetic Dataset:百度的自动驾驶的合成数据集,场景使用Unity 3D引擎创建。

  • BDD-100k:Berkeley的大规模自动驾驶视频数据集,主要采集于美国城市的一天中的许多不同时间,天气条件和驾驶场景。

  • Oxford RobotCar:牛津大学的项目,数据是对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气、行人和交通情况下的数据,也有建筑和道路施工时的数据,长达1000小时以上。

  • nuScenes:由Motional(前身为nuTonomy)团队开发的用于自动驾驶的共有大型数据集。数据集来源于波士顿和新加坡采集的1000个驾驶场景,每个场景选取了20秒长的视频,包括大约140万个图像、39万个激光雷达点云、140万个雷达扫描和4万个关键帧中的140万个对象边界框。

交通标志数据集:

  • KUL Belgium Traffic Sign Dataset:比利时的一个交通标志数据集。

  • German Traffic Sign:德国交通标注数据集。

  • STSD:超过20 000张带有20%标签的图像,包含3488个交通标志。

  • LISA:超过6610帧上的7855条标注。

  • Tsinghua-Tencent 100K:腾讯和清华合作的数据集,100000张图片,包含30000个交通标志实例。

这篇关于[ADAS预研笔记]感知算法 - 引言及常用数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/Kidwish_mini/article/details/131258166
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/462552

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.