【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)

本文主要是介绍【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 概述

2 帝国企优化算法

3 运行结果

4 参考文献

5 Matlab代码实现


🎁专栏目录链接:

🌈🌈🌈🌟🌟🌟
电气代码智能算法及其应用
路径规划神经网络预测
优化调度图像处理
车间调度信号处理
浪漫的她我的哲思
数学建模

 

1 概述

在互联网的带动下,农产品冷链物流需求越来越大,而成本一直是制约冷链牧流发展的关键因素,如何有效降低冷链物流成本成为国家、企业和消费者共同关注的热点话题。与此同时,冷链物流市场的扩大以及消费者对服务品质的要求提升促使企业不得不提升自身服务质量,提高满意度来增加顾客黏性,在竞争激烈的场中占据一席之地。因此,本文的研究旨在通过合理的车辆调度和路径优化,在保证满意度处于高水平的情况下,使综合成本最低,为冷链物流企业的日常调度工作作提供依据。本文突破了仅考虑运输成本及单配送中心来优化冷链物流路径的局限性克服了传统遗传算法在求解VRP(Vehicle Routing Problem)问题的不足,提出了基于帝国企鹅优化算法求解冷链配送物流车辆调度优化研究,因而具有重要的理论和现实意义。

2 帝国企优化算法

自2018年Gaurav等[4提出帝企鹅优化算法以来,学者对初始帝企鹅优化算法进行研究并且寻求其进一步改进,希望可以将其用于不同类型的优化问题求解中。Jia等[6⒁I在帝企鹅优化算法的基础上,利用Masi嫡作为目标函数,提出一种改进帝企鹅优化算法,实验结果证明所提出的算法更适合于高维复杂卫星图像的分割。Kumar等使用基于量子的多目标帝企鹅优化算法进行自动聚类,以及应用于图像分割中。Santos等提出了多目标版本的帝企鹅优化算法,并且将提出的算法用于最佳特征选择与癌症分类。Baliarsingh 等[I将社会工程优化的莫因算法嵌入帝企鹅优化算法,增强了EPO算法的开发能力,成功的将医疗数据进行分类。Gaurav等[7]提出一个新的二元帝企鹅优化算法(BEPO)进行自动特征选择。Tang等对原始帝企鹅优化算法改进,提出一种改进EPO算法,用以优化住址建筑。Gaurav等!?"结合了多目标斑点鬣狗算法、樽海鞘群算法和帝企鹅优化算法的特征,提出新的混合多目标元启发式算法求解工程设计问题。Shrivastava将帝企鹅优化算法应用于限制使用无线电传感器网络污染的城市交通管理。

3 运行结果

这里仅展现部分图。

部分代码:

function drawPc(result1,option,data,str)    figure    hold on    legendStr=[{'车场'},{'顾客'}];    plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','r',...        'MarkerSize',10);    plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','g',...        'MarkerSize',10);    for i=1:length(result1.recording.Path)        path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];    end    legend(legendStr);    title([str,',求解路线,总目标:',num2str(result1.fit)]);    for i=1:length(result1.recording.Path)        figure        hold on        legendStr=[{'车场'},{'顾客'}];        plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','r',...            'MarkerSize',10);        plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','g',...            'MarkerSize',10);                path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];        legend(legendStr);        title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]);    endend

function drawPc(result1,option,data,str) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); for i=1:length(result1.recording.Path) path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; end legend(legendStr); title([str,',求解路线,总目标:',num2str(result1.fit)]); for i=1:length(result1.recording.Path) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; legend(legendStr); title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]); endend

4 参考文献

部分理论来源于网络文献,如有侵权联系删除。

[1]李娜. 单亲遗传算法的冷链物流车辆路径问题(VRP)优化研究[D].燕山大学,2016.

5 Matlab代码实现

这篇关于【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459766

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配