机器学习: Viola-Jones 人脸检测算法解析(二)

2023-12-05 11:48

本文主要是介绍机器学习: Viola-Jones 人脸检测算法解析(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇博客里,我们介绍了VJ人脸检测算法的特征,就是基于积分图像的矩形特征,这些矩形特征也被称为Haar like features, 通常来说,一张图像会生成一个远远高于图像维度的特征集,比如一个 24×24 的图像,会生成162336个矩形特征。在实时的人脸检测应用中,不可能把所有的特征都用上,所有需要做特征选择,这篇博客里,我们将要介绍AdaBoost的训练方法和基于AdaBoost的层级分类器。

AdaBoost 分类

AdaBoost 可以同时进行特征选择与分类器训练,简单来说,AdaBoost 就是将一系列的”弱”分类器通过线性组合,构成一个”强”分类器。如下所示:

h(x)=signj=1Mαjhj(x)

h(x) 就是一个”强”分类器,而 hj(x) 就是”弱”分类器, hj(x) 其实是一个简单的阈值函数:

hj(x)={sj,sj,iffj<θjotherwise

θj 就是阈值, sj{1,1} 以及系数 αj 都由训练的时候确定。结合维基百科和IJCV上的文章 Robust Real-Time Face Detection , 训练算法的具体流程如下:

给定一组 N 个训练样本(xi,yi), 其中含有 m 个正样本, l 个负样本, 如果 xi 是人脸图像,则 yi=1 , 否则 yi=1 ,


  1. 对每一个训练样本 i 赋予一个初始的权值: wi1=1/N
  2. 假设一张图像会产生 M 个特征,对于每一个特征 fj, j=1,2,...M
    1) 对权值重新归一化 wij=wijNt=1wtj
    2) 遍历训练集中每个样本特征 fj ,寻找最优的 θj , sj 使其分类误差最小即: θj,sj=argminθ,sNi=1wijϵij ,
    其中 ϵij={01ifyi=hj(xi,θj,sj)otherwise
    3) 更新下一个特征的权值: wj+1,i=wj,iβ1eij , 如果样本 xi 被正确识别则 ei=0 ,否则 ei=1 . βj=ϵj1ϵj

  3. 遍历所有的特征, 可以得到最终的分类器 h(x)=sign(Mj=1αjhj(x)) , αj=log1βj

层级分类器

在一张正常的图像中,包含人脸的区域只占整张图像中很小的一部分,如果所有的局部区域都要遍历所有特征的话,这个运算量非常巨大,也非常耗时,所以为了节省运算时间,应该把更多的检测放在潜在的正样本区域上。所以有了层级分类器的概念,层级分类器就是为了将任务简化,一开始用少量的特征将大部分的negative 区域剔除,后面再利用复杂的特征将 false positive 区域剔除。

在层级分类器架构中,每一层次含有一个”强”分类器,所有的矩形特征被分成几组,每一组都包含部分矩形特征,这些矩形特征用在层级分类器的每一阶段,层级分类器的每一阶段都会判别输入的区域是不是人脸,如果肯定不是,那么这个区域会被立即舍弃掉,只有那些被判别为可能是人脸的区域才会被传入下一阶段用更为复杂的分类器进一步的判别。其流程图如下所示:

这里写图片描述

从上图可以看出,所有的局部区域 (sub-windows) 会用比较简单的特征表示,如下图所示。下面的两种特征可以达到100%的检测率,但是也会产生很多的 false positive,一般来说是 50%的FP rate。但是这两种特征对 negative 区域的识别非常高效,所以层级分类器的第一层基本都是用这两种特征加上一个”强”分类器先将大量的negative 区域剔除。对于 false positive 的处理,有赖于后面阶段更多的特征及分类器。

这里写图片描述

层级分类器的总的识别率 D 或者false positive F, 是每一层的分类器的识别率 d 和 false postivie f 的乘积,即:

D=i=1Kdi

F=i=1Kfi

我们利用AdaBoost 训练分类器的时候,目标函数是分类误差,分类误差不能同时反映检测率与false positive rate, 我们可以通过改变阈值的方法来调整检测率与false positive rate, 一般来说,高阈值的分类器的检测率以及false positive rate 都会比较低,而低阈值的分类器的检测率及false positive rate都很高。此外,测试更多的特征将使得分类器提高识别率同时降低false positive rate, 但是测试更多的特征,也会耗费更多的时间。所以一个层级分类器,将综合考虑以下几个因素:

  • 层级分类器的层次,即需要多少个分类器;
  • 每一层分类器需要测试的特征数 ni
  • 每一层分类器的阈值。

IJCV 的文章提到的算法如下图所示:

这里写图片描述

一开始需要定义每一层分类器的最大 false positive rate f , 以及最小的检测率 d, 并且需要定义一个全局的 false positive rate Ftarget , 训练的过程中,逐渐增加特征数,利用AdaBoost 进行训练,训练好之后,利用validation set 计算 Fi Di , 逐渐降低第 i 个分类器的阈值,直到当前的层级分类器的检测率不低于 d×Di1, 然后清空负样本集, 利用当前的层级分类器在数据集上做测试,将所有的 false detections 作为负样本传入下一层分类器的训练。

只有层级分类器的总得 false positive rate Fi 高于设定的 Ftarget ,就要增加一层分类器。而后面层的负样本都是由前面分类器产生的 false positive 样本。

在IJCV的文章里,VJ 分类器最后一共是38层,并且含有 6060个特征。 作者给出了前面7层的特征数:

2->10->25->25->50->50->50

参考来源:

https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
Viola, Jones: Robust Real-Time Face Detection, IJCV 2001

这篇关于机器学习: Viola-Jones 人脸检测算法解析(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457449

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思