根据豆瓣对《流浪地球》的短评数据进行文本分析和挖掘

2023-12-04 01:04

本文主要是介绍根据豆瓣对《流浪地球》的短评数据进行文本分析和挖掘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

1背景

2019年2月5日电影《流浪地球》正式在中国内地上映。该电影在举行首映的时候,口德好得出奇,所有去看片的业界大咖都发出了画样赞叹,文化学者能锦说:“中国科幻电影元年开启了。"导演徐峰则说,“里程碑式的电影,绝对是世界级别的”。可是公映之后,《流浪地球》的豆评分却从8.4一路跌到了7.9。影片页面排在第一位的,是一篇一星评《流浪地球,不及格》。文末有2.8万人点了“有用”,3.6万人点了“没用”。关于《流浪地球》的观影评价,已经变成了场逐渐失控的舆论混战,如"枪稿“作者灰狼所说,"关于它的舆论,已经演化成、政治正确、水军横行、自来水灭差评、道德绑架、战狼精神”。为了对《流浪地球》的观影评价有个全面的了解,对《流浪地球》的豆影评数据进行分析和挖掘

(1) 给制统计图分析评论数量及评分与时间的关系以及评论者的城市分布情况。
2) 通过词云图分析好评与差评的关键信息。
(3)构建文本分类模型识别每条评论的情感倾向,并对模型效果进行评估

2数据获取

读取数据

import pandas as pd
data=pd.read_csv()
data

查看数据形状

data.shape

读取前五行

data.head()

描述性统计

data.describe()

count:查看数据的数量、unique:有多少个不同的值相当于有多少种,top:出现最多的值,freq:出现的频次

data.describe(include='object')

3数据预处理

查看数据city列的第一个值

data['citys'][0]

借助正则表达式提取城市信息即需要去掉[‘’],保留北京

import re
re.findall("[^''\[\]]+",x)

发现当城市为空时会出现报错(超出范围),因此我们利用apply函数进行操作

data['citys']=data['citys'].apply[lambda x:re.findall("[^''\[\]]+",x)[0] if len(re.findall("[^''\[\]]+",x))!=0 else None]

对于scores也可以参照这个来处理
分词与去除停用词
分词是文本信息处理的基础环节,是将句子切分成一个个词的过程。准确的分词处理可以极大的提高计算机对文本信息的识别理解能力。相反,不准确的分词处理会产生大量的噪声,严重干扰计算机的识别理解能力,并对后续的处理工作产生较人的影响。营见停用词例如:的、了、都、你、我、么等等,这些词通常在文本中大量出现,会带来大量的噪音数据.因此需要将这些停用词进行过滤。

4分词与去除停用词

data['content']

把除了中文字符之外的字符过滤掉,把不是中文字符的用空代替

x=data['content'][0]
x
re.sub('[^\u4E00-\u9FD5]+','',x)
data['content']=data['content'].apply(lambda x:re.sub('[^\u4E00-\u9FD5]+','',x))

#分词

import jieba
data_cut=data['content'.apply(jieba.lcut)]
data_cut

#去除停用词

#载入和加入停用词
with open('../data/stoplist.txt','r',encoding='utf-8') as f:stop=f.read()
stop=stop.split()
stop=['','\n','这部']+stop
stop

判断是否在停用词内

'的' in stop
data_after=data_cut.apply(lambda x:[for i in x if i not in stop])
data_after

4划分数据集

评分小于30为差评,标记为0:反之则为好评,标记为1。将原始数据划分为训练集和测试集,划分比例为4;1.

data_after=pd.DataFrame(data_after)
data_after['score']=data['scores']
data_after.shape
data_after['score'].apply[lambda x:re.findall("[0-9]+",x)[0] if len(re.findall("[0-9]+",x))!=0 else None]
data_after

把列表转成字符串

data_after['content']=data_after['content'].apply(lambda x :' '.join(x))

新建一列label存储

data_after['label'].apply(lambda x:1 if x>=30 else 0)
data_new=data_after[['content','label']]

划分数据集

from sklearn.model_selection import train_test_split
src_training,src_testing=train_test_split(data_new,test_size=0.2,stratify=data_after[label],random_state=123)
src_training
connents_train,connents_test=src_training['content']
.values,src——testing['content'].values
y_train,y_test=src_training['label'],src_testing['label']
src_training['content'].values

5文本的向量化

for i in range(len(comments_train)):if len(comments_train[i])==0:print(i)
ind=[i for i in range(len(comments_train)) if i not in [89,205]]
comments_train=comments_train[ind]
y_train=y_train.values[ind]
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformercount_vectorizer=CountVectorizer()
tfidf_trainformer=TfidfTransformer()word_count_train=count_vectorizer.fit_transform(comments_train)
tfodf_train=tfidf_transformer.transform(word_count_test)print(tfidf_train.shape)
print(tfidf_test.shape)

6模型构建与评估

from sklearn.neighbors import KNeighborsClassifiermodel=KNeighborsClassifier(n_neighbors=8,weights='distance')#模型构建
model.fit(tfidf_train,y_train)#模型训练
model

模型评估

pre=model.predict(tfidf_test)
pre#计算正确率
from sklearn.metrics import accuracy_score
accuracy_score(y_test,pre)
y_test

有一说一这个不太行
这个看起来不错
加这个
完美

这篇关于根据豆瓣对《流浪地球》的短评数据进行文本分析和挖掘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451535

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意