独立成分分析ICA系列5:信息极大化的 ICA 算法

2023-12-02 12:18

本文主要是介绍独立成分分析ICA系列5:信息极大化的 ICA 算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.ICA基本理论再综述

在实际应用中,可以通过传感器得到一系列观测信号,这些观测信号是由未知源信号经过某种混合系统的输出,如在移动通信中,源信号经过发射机天线发出后,在无线信道中经过不确定的混合和干扰,以至于到达接收机的信号是一个多径、携噪的混合信号,而从混合信号中分离出发射端的源信号将大大改善通信质量,因此类似的问题都可以用 ICA的方法来解决。

假设由 N 个源信号 构成一个列向量由 M 个观测信号构成一个列向量A 是一个 N*M 维混合矩阵,满足下列方程:

 注意看!观测信号一定要大于等于源信号,否则这个问题是无解的!!!

ICA 的思路是找到一个 N*M 维反混合矩阵W满足:Y=WX=WAS;Y是我们求解后的成分信号,S是源信号,若要使Y最大程度上逼近S,这实际上就是个优化过程,只需要满足解混合矩阵W最佳估计A的逆矩阵就好! 

2.信息极大化算法原理

信息极大化原则(Infomax,  Information   Maximization)可描述为:系统的输出端信息达到最大时,等价于各输出分量之间的互信息达到最小,则此时各输出分量间的冗余信息得到去除。依据该原则对输出向量建立一个目标函数,这里选择输出向量的熵作为目标函数,熵可以用来度量一个随机量的无序性,如果输出向量的各分量统计独立性越高则相应的熵便越大,所以只需求得使目标函数达到最大时的分离矩阵便可得到输入端向量的最佳估计。

注:Y=WX

注:Z=g(Y)

注:△W是微分收敛逼近思想

3.Infomax算法步骤


4.Infomax算法在语音上的应用

4.1语音增强与消噪

语音信号在传输的过程中不可避免地会受到周围噪音的干扰,这些干扰使最终接收到的语音并非纯净语音,而是携噪语音,很多情况下噪声的功率远远大于语音信号的功率,以致于弱的目标语音信息被很强的干扰噪声所湮没。普通的滤波技术很难解决这个问题,而ICA算法则可以实现。语音中的噪声一般为加性噪声,而且噪声的产生独立于语音的产生,如果将语音和噪声分别看作是由两个独立的信号源产生,然后线性地叠加成携噪语音,则完全可以应用ICA方法分离出语音和噪声,从而达到语音增强和消噪的目的。

4.2助听器功能的改善

对于听力障碍者来说,助听器性能的优劣至关重要。传统的助听器仅具有单纯的放大功能和简单的语音滤波功能,在噪声环境中,将所有接收到的信号一同放大,在有两个或两个以上的说话者存在的条件下,有听力障碍的人往往很烦躁,很难把注意力集中到某个人的讲话内容上,因为多个话音信号的频谱特征很接近,滤波器无法将其他的话音信号滤掉,导致助听器的功能下降。此时可以利用ICA分离技术选择出特定的源信号,使得人们可以清楚地听到想要与之交流的说话人的声音,而不会受到其他外来话音的干扰。因此将ICA分离技术应用到助听器中,将大大提高这一产品的实用性和市场竞争力。

5.局限性

采集设备离声源的距离要尽可能近,否则各个语音信号之间的独立性会很差,将大大降低算法的分离效果。
 

 6.参考文献:

[1]Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources.[J]. Neural Computation, 1999, 11(2):417-441.

[2]康春玉, 章新华, & 韩东. (2008). 一种基于盲源分离的doa估计方法. Acta Automatica Sinica, 34(10), 1324-1326.

[3]任燕, 何培宇, 闫军, & 杨茂水. (2010). 预处理对基于ica多用户检测算法影响研究. 通信技术, 43(4), 193-195.

[4]栗科峰, & 赵建峰. (2011). 基于信息极大化的ica算法研究. 通信技术, 44(5), 113-115. 

这篇关于独立成分分析ICA系列5:信息极大化的 ICA 算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445312

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按