认识O(N*logN)的排序(总结)

2023-12-01 18:10
文章标签 总结 认识 排序 logn

本文主要是介绍认识O(N*logN)的排序(总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在总结之前看看下面这张表:

从表中可以看到归并排序、快速排序、堆排序的平均时间复杂度是 O(nlogn) 。我要总结的便是这三种排序算法,它们都适合于数据量比较大的排序运算中。

一. 归并排序:

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数开始,谁小就先取谁。然后再进行比较,如果有数列比较完了,那直接将另一个数列的数据依次取出即可。

 

可以看出合并有序数列的效率是比较高的,可以达到O(n)。

解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?

可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归地分解数列,再合并数列就完成了归并排序。

//将有二个有序数列a[first...mid]和a[mid...last]合并。
void mergearray(int a[], int first, int mid, int last, int temp[])
{int i = first, j = mid + 1;int m = mid,   n = last;int k = 0;while (i <= m && j <= n){if (a[i] <= a[j])temp[k++] = a[i++];elsetemp[k++] = a[j++];}while (i <= m)temp[k++] = a[i++];while (j <= n)temp[k++] = a[j++];for (i = 0; i < k; i++)a[first + i] = temp[i];//first+i不能丢掉first
}
void mergesort(int a[], int first, int last, int temp[])
{if (first < last){int mid = (first + last) / 2;mergesort(a, first, mid, temp);    //左边有序mergesort(a, mid + 1, last, temp); //右边有序mergearray(a, first, mid, last, temp); //再将二个有序数列合并}
}bool MergeSort(int a[], int n)
{int *p = new int[n];if (p == NULL)return false;mergesort(a, 0, n - 1, p);delete[] p;return true;
}
//此处引用的是https://blog.csdn.net/morewindows/article/details/6678165#的代码

 

归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。

二. 快速排序:

快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。

该方法的基本思想是:

1.先从数列中取出一个数作为基准数。

2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。

3.再对左右区间重复第二步,直到各区间只有一个数。

对快速排序可以作进一步的说明:挖坑填数 + 分治法

对挖坑填数进行总结

1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。

2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。

3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。

4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
 

//挖坑填数
int AdjustArray(int s[], int l, int r) //返回调整后基准数的位置
{int i = l, j = r;int x = s[l]; //s[l]即s[i]就是第一个坑while (i < j){// 从右向左找小于x的数来填s[i]while(i < j && s[j] >= x) j--;  if(i < j) {s[i] = s[j]; //将s[j]填到s[i]中,s[j]就形成了一个新的坑i++;}// 从左向右找大于或等于x的数来填s[j]while(i < j && s[i] < x)i++;  if(i < j) {s[j] = s[i]; //将s[i]填到s[j]中,s[i]就形成了一个新的坑j--;}}//退出时,i等于j。将x填到这个坑中。s[i] = x;return i;
}//分治
void quick_sort1(int s[], int l, int r)
{if (l < r){int i = AdjustArray(s, l, r);//先成挖坑填数法调整s[]quick_sort1(s, l, i - 1); // 递归调用 quick_sort1(s, i + 1, r);}
}
//代码引用于https://blog.csdn.net/morewindows/article/details/6684558

三. 堆排序:

堆是一棵顺序存储的完全二叉树
堆排序的时间复杂度: O(nlogn),属于不稳定排序。

大根堆小根堆
每个节点的值大于等于孩子节点得堆每个节点得值小于等于孩子节点得值

堆排序就是利用堆得性质堆数组进行排序,待排序元素存放在一个数组Arr[0 ……n] 中,将Arr用一颗完全二叉树来表示,数组第一个元素就是完全二叉树的根,后面依次按层从左至右为,左孩子,右孩子,任意节点Arr[ i ] 的左孩子是Arr[ 2i+1 ],右孩子是 Arr[ 2i+2 ],对这个二叉树进行调整。

通过大佬的图像来介绍一下:

1.构建初始堆:


2.完整的堆排序:

//通过传指针交换两个元素的位置
void Swap(int *num1, int *num2)
{int tmp = *num1;*num1 = *num2;*num2 = tmp;
}//给定父节点的索引,得到左子节点的索引,跟的索引为0
#define LeftChild(i) (2*(i)+1)//元素向下调整方法
void PercDown(int A[], int i, int N)
{//子节点的索引号int child;//存储当前父节点元素的临时变量//(注:每一个节点都可以看作是其子树的根节点)int tmp;for (tmp = A[i]; LeftChild(i)<N; i = child){child = LeftChild(i); //左子节点索引//挑选出左、右子节点中较大者if (child != N - 1 && A[child + 1] > A[child]){child++;}//比较当前父节点与较大子节点if (A[i]<A[child]){//交换当前父节点处的元素值与较大子节点的元素值//此处也可以调用:Swap(A[i], A[child])tmp = A[i];A[i] = A[child];A[child] = tmp;}else{break;}}
}
//堆排序
void HeapSort(int A[], int N)
{int i;//步骤一:根据A数组元素,创建大根堆//从第 n/2 个记录开始进行建堆for (i = N / 2; i >= 0; i--){PercDown(A, i, N);}//步骤二:调整大根堆for (i = N - 1; i > 0; i--){//首尾交换Swap(&A[0], &A[i]);//将最后一个叶子节点与根节点进行交换,//再根据堆性质进行调整PercDown(A, 0, i);}
}

 

这篇关于认识O(N*logN)的排序(总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442159

相关文章

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、