15+城市道路要素分割应用,用这一个分割模型就够了

2023-12-01 14:10

本文主要是介绍15+城市道路要素分割应用,用这一个分割模型就够了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文已在飞桨公众号发布,查看请戳链接:
15+城市道路要素分割应用,用这一个分割模型就够了!

图像语义分割在计算机视觉中是一个经典且具有挑战性的任务。它旨在提供详细的像素级图像分类,相当于为每个像素分配语义标签。该技术目前被广泛应用于城市安防、路况判断等系统领域,比如地图导航的应用是通过分割识别建筑物、墙体、路面状况等道路要素,从而更准确地捕捉路面关键信息。

为了让大家能够更快速地上手技术,百度视觉技术部基于飞桨图像分割开发套件PaddleSeg提供了一套完整的城市街景道路要素分割产业实践范例,提供了从数据准备、模型训练及优化的全流程方案,降低产业落地门槛。这个项目中我们需要把19项关键目标分割出来,那么我们具体的方案思路是什么呢?

图片

图1 分割示例

点击GET项目链接

https://aistudio.baidu.com/aistudio/projectdetail/4038141?contributionType=1

所有源码及教程均已开源,欢迎大家使用。

项目难点

目标复杂

  • 道路复杂:包含直行,转弯,红绿灯路口等;

  • 环境复杂:要适应白天、黑夜、雾天和雨天等;

  • 场景复杂:城市道路、乡村、高速公路等场景差异性较大。

样本不均衡

  • 类别多:包含路面、人行道、建筑物、墙、栅栏、杆子、交通灯、交通标志、植被、地面、天空、人、骑车的人、车、卡车、巴士、火车、摩托车、自行车;

  • 不均衡:每张图像中最多会出现15辆车和30个行人,少时会出现2辆车且无行人,以及各种程度的遮挡与截断。

模型选择

主流的语义分割方案包括如下几个系列:

  • FCN(Fully Convolution Network):即全卷积网络,作为使用深度学习做图像分割的先例,其象征意义更大于实际意义。

  • U-Net系列:在UNet之前,主要的分割网络都是直筒式的,只使用顶层或后几层信息来上采样重建。而UNet是直接连接到输入端的卷积层。

  • DeepLab系列:DeepLab在图像分割领域中是另一个系列,目前已经有多个版本,和之前的UNet系列比起来,主要差别是在对输入图像的处理和网络的结构上。DeepLab主要使用了图像金字塔、空洞卷积、SPP空间金字塔池化、可分离卷积等方法来提高分割的效果。

  • HRNet系列:HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,不同于以往的卷积神经网络,该网络在网络深层仍然可以保持高分辨率,因此预测的语义信息更准确,在空间上也更精确。

  • Transformer系列:自从Transformer被引入计算机视觉以来,催生了大量相关研究与应用。在图像分割方向,涌现了像SETR、TransUNet、SegFormer、MaskFormer等基于Transformer的语义分割网络模型。打破了卷积结构在图像全局信息访问限制的问题。

由于分割目标较复杂,我们选取了精度表现较好的HRNet系列中MscaleOCRNet 模型进行后续实验,它SOTA的mIoU达到了87%。相比于HRNet网络结构,它是在分割后的结果上计算每个像素与图像其他像素的一个关系权重,与原特征进行一个叠加构成OCRNet网络,再基于OCRNet进行分层多尺度训练形成最终的 MscaleOCRNet,多尺度训练与推理方式如下图所示。

图片

图2 MscaleOCRNet 方案

算法优化

为了进一步提升精度,解决样本不均衡的问题,我们提供了以下优化思路:

  • 修改预训练模型:将mapillary预训练改为Cityscapes预训练模型,迁移至KITTI-STEP数据集训练可以有效提升分割效果;

  • 增加多尺度训练:由 [0.5,1.0] 两个尺度增加至 [0.5,1.0,2.0] 三个尺度;

  • 修改输入尺寸:修改输入尺寸由1024x512变为原图尺寸1248x384。

图片

使用工具

本项目使用PaddleSeg开发完成。PaddleSeg是基于飞桨PaddlePaddle开发的端到端图像分割开发套件,涵盖了高精度和轻量级等不同方向的大量高质量分割模型。通过模块化的设计,提供了配置化驱动和API调用两种应用方式,帮助开发者更便捷地完成从训练到部署的全流程图像分割应用。提供语义分割、交互式分割、全景分割、Matting四大图像分割能力。

模型部署

使用飞桨原生推理库Paddle Inference,用于服务端模型部署,总体上分为三步:

1. 创建PaddlePredictor,设置所导出的模型路径;

2. 创建输入用的PaddleTensor,传入到PaddlePredictor中;

3. 获取输出的PaddleTensor,将结果取出。

图片

如果想了解更详细方案细节,欢迎关注我们的直播课程,手把手全流程教学等着你哦。

精彩课程预告

为了让小伙伴们更便捷地应用范例教程,百度高级研发工程师将于6月23日(周四)20:00点为大家深度解析从数据准备、方案设计到模型优化部署的开发全流程,手把手教大家进行代码实践。

关注飞桨公众号报名直播课

加入技术交流群

引用说明:图2引用自“Hierarchical Multi-Scale Attention for Semantic Segmentation”

关注【飞桨PaddlePaddle】公众号

获取更多技术内容~

这篇关于15+城市道路要素分割应用,用这一个分割模型就够了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/441466

相关文章

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念