【LeetCode】每日一题 2023_11_28 设计前中后队列(数组/链表/双端队列)

2023-11-29 16:44

本文主要是介绍【LeetCode】每日一题 2023_11_28 设计前中后队列(数组/链表/双端队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 刷题前唠嗑
  • 题目:设计前中后队列
    • 题目描述
    • 代码与解题思路
    • 偷看大佬题解
  • 结语

刷题前唠嗑


LeetCode?启动!!!

这道题的难度,才是我想象中的中等题的难度好吧,昨天那玩意对我来说还是太难了。。。

题目:设计前中后队列

题目链接:1670. 设计前中后队列

题目描述

代码与解题思路

type FrontMiddleBackQueue struct {queue []intsize int
}func Constructor() FrontMiddleBackQueue {return FrontMiddleBackQueue {queue: make([]int, 1001), size: 0,}
}func (this *FrontMiddleBackQueue) PushFront(val int)  {tmp := make([]int, 1001)tmp[0] = valfor i := 1; i < this.size+1; i++ {tmp[i] = this.queue[i-1]}this.queue = tmpthis.size++
}func (this *FrontMiddleBackQueue) PushMiddle(val int)  {tmp := make([]int, 1001)for i := 0; i < this.size/2; i++ {tmp[i] = this.queue[i]}tmp[this.size/2] = valfor i := this.size/2+1; i < this.size+1; i++ {tmp[i] = this.queue[i-1]}this.queue = tmpthis.size++
}func (this *FrontMiddleBackQueue) PushBack(val int)  {tmp := make([]int, 1001)for i := 0; i < this.size; i++ {tmp[i] = this.queue[i]}tmp[this.size] = valthis.queue = tmpthis.size++
}func (this *FrontMiddleBackQueue) PopFront() int {if this.size == 0 {return -1}ans := this.queue[0]this.queue = this.queue[1:]this.size--return ans
}func (this *FrontMiddleBackQueue) PopMiddle() int {if this.size == 0 {return -1}ans := this.queue[(this.size-1)/2]this.queue = append(this.queue[:(this.size-1)/2], this.queue[(this.size-1)/2+1:]...)this.size--return ans
}func (this *FrontMiddleBackQueue) PopBack() int {if this.size == 0 {return -1}ans := this.queue[this.size-1]this.queue = this.queue[:this.size-1]this.size--return ans
}

快来欣赏一下我的数组屎山,当时一开始做的时候我在想是用链表做还是数组做,链表做肯定是更优的,但是我感觉链表可能比较麻烦(事实证明数组更麻烦。。。早知道用链表写了,后悔)

题目的思路就是:跟着题目要求写就行了,主要考察的是代码能力

偷看大佬题解

Go 链表实现:

// 第一种写法:链表
type FrontMiddleBackQueue struct {left  *list.Listright *list.List
}func Constructor() FrontMiddleBackQueue {return FrontMiddleBackQueue{left:  list.New(),right: list.New(),}
}// 调整长度,保证 0 <= right.Len() - left.Len() <= 1
// 从而保证可以在正中间插入删除元素
func (q *FrontMiddleBackQueue) balance() {if q.left.Len() > q.right.Len() {q.right.PushFront(q.left.Remove(q.left.Back()))} else if q.right.Len() > q.left.Len()+1 {q.left.PushBack(q.right.Remove(q.right.Front()))}
}func (q *FrontMiddleBackQueue) PushFront(val int) {q.left.PushFront(val)q.balance()
}func (q *FrontMiddleBackQueue) PushMiddle(val int) {if q.left.Len() < q.right.Len() {q.left.PushBack(val)} else {q.right.PushFront(val)}
}func (q *FrontMiddleBackQueue) PushBack(val int) {q.right.PushBack(val)q.balance()
}func (q *FrontMiddleBackQueue) PopFront() (val int) {if q.right.Len() == 0 { // 整个队列为空return -1}if q.left.Len() > 0 {val = q.left.Remove(q.left.Front()).(int)} else {val = q.right.Remove(q.right.Front()).(int)}q.balance()return
}func (q *FrontMiddleBackQueue) PopMiddle() int {if q.right.Len() == 0 { // 整个队列为空return -1}if q.left.Len() == q.right.Len() {return q.left.Remove(q.left.Back()).(int)}return q.right.Remove(q.right.Front()).(int)
}func (q *FrontMiddleBackQueue) PopBack() int {if q.right.Len() == 0 { // 整个队列为空return -1}val := q.right.Remove(q.right.Back()).(int)q.balance()return val
}

Go 双端队列实现

// 第二种写法:四个 slice
type FrontMiddleBackQueue struct {left  *Dequeright *Deque
}func Constructor() FrontMiddleBackQueue {return FrontMiddleBackQueue{left:  &Deque{},right: &Deque{},}
}// 调整长度,保证 0 <= right.Len() - left.Len() <= 1
// 从而保证可以在正中间插入删除元素
func (q *FrontMiddleBackQueue) balance() {if q.left.Len() > q.right.Len() {q.right.PushFront(q.left.PopBack())} else if q.right.Len() > q.left.Len()+1 {q.left.PushBack(q.right.PopFront())}
}func (q *FrontMiddleBackQueue) PushFront(val int) {q.left.PushFront(val)q.balance()
}func (q *FrontMiddleBackQueue) PushMiddle(val int) {if q.left.Len() < q.right.Len() {q.left.PushBack(val)} else {q.right.PushFront(val)}
}func (q *FrontMiddleBackQueue) PushBack(val int) {q.right.PushBack(val)q.balance()
}func (q *FrontMiddleBackQueue) PopFront() (val int) {if q.right.Len() == 0 { // 整个队列为空return -1}if q.left.Len() > 0 {val = q.left.PopFront()} else {val = q.right.PopFront()}q.balance()return
}func (q *FrontMiddleBackQueue) PopMiddle() int {if q.right.Len() == 0 { // 整个队列为空return -1}if q.left.Len() == q.right.Len() {return q.left.PopBack()}return q.right.PopFront()
}func (q *FrontMiddleBackQueue) PopBack() int {if q.right.Len() == 0 { // 整个队列为空return -1}val := q.right.PopBack()q.balance()return val
}// 两个 slice 头对头,即可实现双端队列
// 但这并不是一个「工业级」的实现,因为 slice 没有「缩容」的概念
// 这意味着在大量的 pop 操作后,会产生大量无法被自动 GC 的空间
type Deque struct {left  []intright []int
}func (q Deque) Empty() bool {return len(q.left) == 0 && len(q.right) == 0
}func (q Deque) Len() int {return len(q.left) + len(q.right)
}func (q *Deque) PushFront(v int) {q.left = append(q.left, v)
}func (q *Deque) PushBack(v int) {q.right = append(q.right, v)
}func (q *Deque) PopFront() (v int) {if len(q.left) > 0 {q.left, v = q.left[:len(q.left)-1], q.left[len(q.left)-1]} else {v, q.right = q.right[0], q.right[1:]}return
}func (q *Deque) PopBack() (v int) {if len(q.right) > 0 {q.right, v = q.right[:len(q.right)-1], q.right[len(q.right)-1]} else {v, q.left = q.left[0], q.left[1:]}return
}

用官方题解评论区大佬的话来说就是,双端队列考思路,链表解法考代码能力。这就是这道题考察的点。

结语

终于,又做出了一道每日一题,晕倒了

这篇关于【LeetCode】每日一题 2023_11_28 设计前中后队列(数组/链表/双端队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/433550

相关文章

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序